Suppr超能文献

通过大肠杆菌代谢工程生产新型槲皮素糖苷。

Production of a novel quercetin glycoside through metabolic engineering of Escherichia coli.

机构信息

Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea.

出版信息

Appl Environ Microbiol. 2012 Jun;78(12):4256-62. doi: 10.1128/AEM.00275-12. Epub 2012 Apr 6.

Abstract

Most flavonoids exist as sugar conjugates. Naturally occurring flavonoid sugar conjugates include glucose, galactose, glucuronide, rhamnose, xylose, and arabinose. These flavonoid glycosides have diverse physiological activities, depending on the type of sugar attached. To synthesize an unnatural flavonoid glycoside, Actinobacillus actinomycetemcomitans gene tll (encoding dTDP-6-deoxy-L-lyxo-4-hexulose reductase, which converts the endogenous nucleotide sugar dTDP-4-dehydro-6-deoxy-L-mannose to dTDP-6-deoxytalose) was introduced into Escherichia coli. In addition, nucleotide-sugar dependent glycosyltransferases (UGTs) were screened to find a UGT that could use dTDP-6-deoxytalose. Supplementation of this engineered strain of E. coli with quercetin resulted in the production of quercetin-3-O-(6-deoxytalose). To increase the production of quercetin 3-O-(6-deoxytalose) by increasing the supplement of dTDP-6-deoxytalose in E. coli, we engineered nucleotide biosynthetic genes of E. coli, such as galU (UTP-glucose 1-phosphate uridyltransferase), rffA (dTDP-4-oxo-6-deoxy-d-glucose transaminase), and/or rfbD (dTDP-4-dehydrorahmnose reductase). The engineered E. coli strain produced approximately 98 mg of quercetin 3-O-(6-deoxytalose)/liter, which is 7-fold more than that produced by the wild-type strain, and the by-products, quercetin 3-O-glucose and quercetin 3-O-rhamnose, were also significantly reduced.

摘要

大多数类黄酮以糖缀合物的形式存在。天然存在的类黄酮糖缀合物包括葡萄糖、半乳糖、葡萄糖醛酸、鼠李糖、木糖和阿拉伯糖。这些类黄酮糖苷具有多种生理活性,具体取决于所连接的糖的类型。为了合成非天然类黄酮糖苷,将 Actinobacillus actinomycetemcomitans 基因 tll(编码 dTDP-6-去氧-L-塔罗糖还原酶,该酶将内源性核苷酸糖 dTDP-4-去氢-6-脱氧-L-甘露糖转化为 dTDP-6-去氧塔罗糖)引入大肠杆菌。此外,筛选核苷酸糖依赖性糖基转移酶(UGTs),以找到可以使用 dTDP-6-去氧塔罗糖的 UGT。用槲皮素补充这种工程大肠杆菌菌株会导致槲皮素-3-O-(6-去氧塔罗糖)的产生。为了通过增加大肠杆菌中 dTDP-6-去氧塔罗糖的补充来增加槲皮素 3-O-(6-去氧塔罗糖)的产量,我们对大肠杆菌的核苷酸生物合成基因进行了工程改造,例如 galU(UTP-葡萄糖 1-磷酸尿苷转移酶)、rffA(dTDP-4-氧-6-脱氧-d-葡萄糖转氨酶)和/或 rfbD(dTDP-4-脱水鼠李糖还原酶)。工程大肠杆菌菌株每升可产生约 98 毫克槲皮素 3-O-(6-去氧塔罗糖),是野生型菌株的 7 倍,副产物槲皮素 3-O-葡萄糖和槲皮素 3-O-鼠李糖也显著减少。

相似文献

1
Production of a novel quercetin glycoside through metabolic engineering of Escherichia coli.
Appl Environ Microbiol. 2012 Jun;78(12):4256-62. doi: 10.1128/AEM.00275-12. Epub 2012 Apr 6.
2
Regioselective synthesis of flavonoid bisglycosides using Escherichia coli harboring two glycosyltransferases.
Appl Microbiol Biotechnol. 2013 Jun;97(12):5275-82. doi: 10.1007/s00253-013-4844-7. Epub 2013 Apr 3.
3
Stepwise Synthesis of Quercetin Bisglycosides Using Engineered .
J Microbiol Biotechnol. 2018 Nov 28;28(11):1859-1864. doi: 10.4014/jmb.1807.07043.
5
Synthesis of flavonoid O-pentosides by Escherichia coli through engineering of nucleotide sugar pathways and glycosyltransferase.
Appl Environ Microbiol. 2014 May;80(9):2754-62. doi: 10.1128/AEM.03797-13. Epub 2014 Feb 21.
6
Biological synthesis of quercetin 3-O-N-acetylglucosamine conjugate using engineered Escherichia coli expressing UGT78D2.
Appl Microbiol Biotechnol. 2012 Mar;93(6):2447-53. doi: 10.1007/s00253-011-3747-8. Epub 2011 Dec 13.
7
Biosynthesis of two quercetin O-diglycosides in Escherichia coli.
J Ind Microbiol Biotechnol. 2016 Jun;43(6):841-9. doi: 10.1007/s10295-016-1750-x. Epub 2016 Mar 1.
8
Biosynthesis and production of glycosylated flavonoids in Escherichia coli: current state and perspectives.
Appl Microbiol Biotechnol. 2015 Apr;99(7):2979-88. doi: 10.1007/s00253-015-6504-6. Epub 2015 Mar 10.
10
Production of bioactive flavonol rhamnosides by expression of plant genes in Escherichia coli.
J Agric Food Chem. 2012 Nov 7;60(44):11143-8. doi: 10.1021/jf302123c. Epub 2012 Oct 24.

引用本文的文献

2
Rethinking Biosynthesis of Aclacinomycin A.
Molecules. 2023 Mar 18;28(6):2761. doi: 10.3390/molecules28062761.
4
A Review on Structure, Modifications and Structure-Activity Relation of Quercetin and Its Derivatives.
J Microbiol Biotechnol. 2020 Jan 28;30(1):11-20. doi: 10.4014/jmb.1907.07003.
5
The Sweet Side of Plant-Specialized Metabolism.
Cold Spring Harb Perspect Biol. 2019 Dec 2;11(12):a034744. doi: 10.1101/cshperspect.a034744.
6
Microbial Transformation of Flavonoids by ACCC 37814.
Molecules. 2019 Mar 15;24(6):1028. doi: 10.3390/molecules24061028.
7
Biosynthesis of flavone C-glucosides in engineered Escherichia coli.
Appl Microbiol Biotechnol. 2018 Feb;102(3):1251-1267. doi: 10.1007/s00253-017-8694-6. Epub 2018 Jan 7.
8
Engineering of Escherichia coli for the synthesis of N-hydroxycinnamoyl tryptamine and serotonin.
J Ind Microbiol Biotechnol. 2017 Nov;44(11):1551-1560. doi: 10.1007/s10295-017-1975-3. Epub 2017 Aug 17.
10
Biosynthesis of three N-acetylaminosugar-conjugated flavonoids using engineered Escherichia coli.
Microb Cell Fact. 2016 Oct 24;15(1):182. doi: 10.1186/s12934-016-0582-8.

本文引用的文献

1
Biological synthesis of quercetin 3-O-N-acetylglucosamine conjugate using engineered Escherichia coli expressing UGT78D2.
Appl Microbiol Biotechnol. 2012 Mar;93(6):2447-53. doi: 10.1007/s00253-011-3747-8. Epub 2011 Dec 13.
2
Thematic minireview series on enzyme evolution in the post-genomic era.
J Biol Chem. 2012 Jan 2;287(1):1-2. doi: 10.1074/jbc.R111.307322. Epub 2011 Nov 8.
5
Substrate specificity of plant UDP-dependent glycosyltransferases predicted from crystal structures and homology modeling.
Phytochemistry. 2009 Feb;70(3):325-47. doi: 10.1016/j.phytochem.2008.12.009. Epub 2009 Feb 13.
6
The impact of enzyme engineering upon natural product glycodiversification.
Curr Opin Chem Biol. 2008 Oct;12(5):556-64. doi: 10.1016/j.cbpa.2008.07.013.
8
Four glucosyltransferases from rice: cDNA cloning, expression, and characterization.
J Plant Physiol. 2008 Mar 13;165(4):435-44. doi: 10.1016/j.jplph.2007.01.006. Epub 2007 Mar 23.
9
Natural products as sources of new drugs over the last 25 years.
J Nat Prod. 2007 Mar;70(3):461-77. doi: 10.1021/np068054v. Epub 2007 Feb 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验