Suppr超能文献

种子植物核苷酸景观的模式和演化。

Patterns and evolution of nucleotide landscapes in seed plants.

机构信息

Institut des Sciences de l'Evolution de Montpellier, Unité Mixte de Recherche 5554, Centre National de la Recherche Scientifique, Université Montpellier 2, F-34095 Montpellier, France.

出版信息

Plant Cell. 2012 Apr;24(4):1379-97. doi: 10.1105/tpc.111.093674. Epub 2012 Apr 6.

Abstract

Nucleotide landscapes, which are the way base composition is distributed along a genome, strongly vary among species. The underlying causes of these variations have been much debated. Though mutational bias and selection were initially invoked, GC-biased gene conversion (gBGC), a recombination-associated process favoring the G and C over A and T bases, is increasingly recognized as a major factor. As opposed to vertebrates, evolution of GC content is less well known in plants. Most studies have focused on the GC-poor and homogeneous Arabidopsis thaliana genome and the much more GC-rich and heterogeneous rice (Oryza sativa) genome and have often been generalized as a dicot/monocot dichotomy. This vision is clearly phylogenetically biased and does not allow understanding the mechanisms involved in GC content evolution in plants. To tackle these issues, we used EST data from more than 200 species and provided the most comprehensive description of gene GC content across the seed plant phylogeny so far available. As opposed to the classically assumed dicot/monocot dichotomy, we found continuous variations in GC content from the probably ancestral GC-poor and homogeneous genomes to the more derived GC-rich and highly heterogeneous ones, with several independent enrichment episodes. Our results suggest that gBGC could play a significant role in the evolution of GC content in plant genomes.

摘要

核苷酸景观是指碱基组成在基因组中分布的方式,在不同物种中存在强烈差异。这些变化的根本原因一直存在争议。虽然最初认为是突变偏向和选择导致了这种差异,但越来越多的人认为 GC 偏向性基因转换(gBGC)是一个主要因素,gBGC 是一种与重组相关的过程,有利于 G 和 C 碱基而不是 A 和 T 碱基。与脊椎动物相比,植物中 GC 含量的进化知之甚少。大多数研究都集中在 GC 含量低且均匀的拟南芥基因组和 GC 含量高且不均匀的水稻(Oryza sativa)基因组上,并且经常被概括为双子叶植物/单子叶植物二分法。这种观点明显存在系统发育偏见,无法理解参与植物 GC 含量进化的机制。为了解决这些问题,我们使用了来自 200 多种物种的 EST 数据,提供了迄今为止最全面的种子植物系统发育中基因 GC 含量的描述。与经典的双子叶植物/单子叶植物二分法相反,我们发现 GC 含量从可能的祖先 GC 含量低且均匀的基因组到更衍生的 GC 含量高且高度不均匀的基因组存在连续变化,有几个独立的富集事件。我们的结果表明,gBGC 可能在植物基因组 GC 含量的进化中发挥重要作用。

相似文献

1
Patterns and evolution of nucleotide landscapes in seed plants.
Plant Cell. 2012 Apr;24(4):1379-97. doi: 10.1105/tpc.111.093674. Epub 2012 Apr 6.
2
GC-biased gene conversion and selection affect GC content in the Oryza genus (rice).
Mol Biol Evol. 2011 Sep;28(9):2695-706. doi: 10.1093/molbev/msr104. Epub 2011 Apr 18.
3
Evolutionary forces affecting synonymous variations in plant genomes.
PLoS Genet. 2017 May 22;13(5):e1006799. doi: 10.1371/journal.pgen.1006799. eCollection 2017 May.
4
Comparative analysis of expressed sequences reveals a conserved pattern of optimal codon usage in plants.
Plant Mol Biol. 2006 Jul;61(4-5):699-710. doi: 10.1007/s11103-006-0041-8.
6
GC content of vertebrate exome landscapes reveal areas of accelerated protein evolution.
BMC Evol Biol. 2019 Jul 16;19(1):144. doi: 10.1186/s12862-019-1469-1.
7
Biased gene conversion and GC-content evolution in the coding sequences of reptiles and vertebrates.
Genome Biol Evol. 2014 Dec 19;7(1):240-50. doi: 10.1093/gbe/evu277.
8
Patterns of codon usage bias in three dicot and four monocot plant species.
Genes Genet Syst. 2003 Oct;78(5):343-52. doi: 10.1266/ggs.78.343.
9
Vertebrate codon bias indicates a highly GC-rich ancestral genome.
Gene. 2013 Apr 25;519(1):113-9. doi: 10.1016/j.gene.2013.01.033. Epub 2013 Jan 31.
10
Cross-species analysis of genic GC3 content and DNA methylation patterns.
Genome Biol Evol. 2013;5(8):1443-56. doi: 10.1093/gbe/evt103.

引用本文的文献

2
Comparative restriction enzyme analysis of methylation (CREAM) reveals methylome variability within a clonal cannabis population.
Front Plant Sci. 2024 May 30;15:1381154. doi: 10.3389/fpls.2024.1381154. eCollection 2024.
3
GC heterogeneity reveals sequence-structures evolution of angiosperm ITS2.
BMC Plant Biol. 2023 Dec 1;23(1):608. doi: 10.1186/s12870-023-04634-9.
5
Plant Tolerance to Drought Stress with Emphasis on Wheat.
Plants (Basel). 2023 May 30;12(11):2170. doi: 10.3390/plants12112170.
6
Structure-Based GC Investigation Sheds New Light on ITS2 Evolution in Species.
Int J Mol Sci. 2023 Apr 23;24(9):7716. doi: 10.3390/ijms24097716.
7
Evolution of codon usage in genomes and its impact on the host.
Front Vet Sci. 2023 Jan 11;9:1021440. doi: 10.3389/fvets.2022.1021440. eCollection 2022.
9
BioKIT: a versatile toolkit for processing and analyzing diverse types of sequence data.
Genetics. 2022 Jul 4;221(3). doi: 10.1093/genetics/iyac079.
10
Genome-Wide Prediction of Transcription Start Sites in Conifers.
Int J Mol Sci. 2022 Feb 3;23(3):1735. doi: 10.3390/ijms23031735.

本文引用的文献

1
Genome-wide crossover distribution in Arabidopsis thaliana meiosis reveals sex-specific patterns along chromosomes.
PLoS Genet. 2011 Nov;7(11):e1002354. doi: 10.1371/journal.pgen.1002354. Epub 2011 Nov 3.
2
Ongoing GC-biased evolution is widespread in the human genome and enriched near recombination hot spots.
Genome Biol Evol. 2011;3:614-26. doi: 10.1093/gbe/evr058. Epub 2011 Jun 21.
4
Comparison of a high-density genetic linkage map to genome features in the model grass Brachypodium distachyon.
Theor Appl Genet. 2011 Aug;123(3):455-64. doi: 10.1007/s00122-011-1598-4. Epub 2011 May 20.
5
GC-biased gene conversion and selection affect GC content in the Oryza genus (rice).
Mol Biol Evol. 2011 Sep;28(9):2695-706. doi: 10.1093/molbev/msr104. Epub 2011 Apr 18.
7
Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy.
Nucleic Acids Res. 2011 Jul;39(Web Server issue):W475-8. doi: 10.1093/nar/gkr201. Epub 2011 Apr 5.
8
GC-biased gene conversion impacts ribosomal DNA evolution in vertebrates, angiosperms, and other eukaryotes.
Mol Biol Evol. 2011 Sep;28(9):2561-75. doi: 10.1093/molbev/msr079. Epub 2011 Mar 28.
9
Dynamic evolution of base composition: causes and consequences in avian phylogenomics.
Mol Biol Evol. 2011 Aug;28(8):2197-210. doi: 10.1093/molbev/msr047. Epub 2011 Apr 4.
10
Pack-Mutator-like transposable elements (Pack-MULEs) induce directional modification of genes through biased insertion and DNA acquisition.
Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1537-42. doi: 10.1073/pnas.1010814108. Epub 2011 Jan 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验