Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW185th Avenue, Beaverton, OR 97006, USA.
Hum Mol Genet. 2012 Jul 1;21(13):2973-90. doi: 10.1093/hmg/dds128. Epub 2012 Apr 5.
The purpose of this study was to investigate the protective effects of the mitochondria-targeted antioxidant catalase (MCAT) and lifespan extension in mice that express amyloid beta (Aβ). Using immunoblotting and immunostaining analyses, we measured the production of full-length amyloid precursor protein (APP), soluble APPα, C-terminal fragments CTF99 and CTF83, monomeric and oligomeric Aβ, Aβ deposits and beta site amyloid precursor protein cleaving enzyme 1 (BACE1), in different stages of disease progression in MCAT/AβPP and AβPP mice. Using quantitative reverse transcriptase polymerase chain reaction and immunostaining analyses, we studied the expression of catalase, BACE1, the Alzheimer's disease (AD) markers, synaptophysin, APP, neprilysin, insulin-degrading enzyme and transthyretin in MCAT, AβPP, MCAT/AβPP and wild-type (WT) mice. Using the high pressure liquid chromatography analysis of 8-hydroxy-2-deoxyguanosine, we measured oxidative DNA damage in the cerebral cortical tissues from MCAT, AβPP, MCAT/AβPP and WT mice. We found that the AβPP transgenic mice that carried the human MCAT gene lived 5 months longer than did the AβPP mice. We also found that the overexpression of MCAT in the brain sections from the MCAT/AβPP transgenic mice significantly correlated with a reduction in the levels of full-length APP, CTF99, BACE1, Aβ levels (40 and 42), Aβ deposits and oxidative DNA damage relative to the brain sections from the AβPP mice. Interestingly, we found significantly increased levels of soluble APPα and CTF83 in the MCAT/AβPP mice, relative to the AβPP mice. These data provide direct evidence that oxidative stress plays a primary role in AD etiopathology and that in MCAT mice express Aβ, MCAT prevents abnormal APP processing, reduces Aβ levels and enhances Aβ-degrading enzymes in mice at different ages, corresponding to different stages of disease progression. These findings indicate that mitochondria-targeted molecules may be an effective therapeutic approach to treat patients with AD.
这项研究的目的是探讨线粒体靶向抗氧化剂过氧化氢酶 (MCAT) 在表达淀粉样蛋白β (Aβ) 的小鼠中的保护作用和寿命延长。通过免疫印迹和免疫染色分析,我们测量了全长淀粉样前体蛋白 (APP)、可溶性 APPα、C 端片段 CTF99 和 CTF83、单体和寡聚体 Aβ、Aβ 沉积和β 位淀粉样前体蛋白裂解酶 1 (BACE1) 在 MCAT/AβPP 和 AβPP 小鼠疾病进展的不同阶段的产生。通过定量逆转录聚合酶链反应和免疫染色分析,我们研究了 MCAT、AβPP、MCAT/AβPP 和野生型 (WT) 小鼠中过氧化氢酶、BACE1、阿尔茨海默病 (AD) 标志物突触小体蛋白、APP、neprilysin、胰岛素降解酶和转甲状腺素的表达。通过高效液相色谱法分析 8-羟基-2-脱氧鸟苷,我们测量了 MCAT、AβPP、MCAT/AβPP 和 WT 小鼠大脑皮质组织中的氧化 DNA 损伤。我们发现,携带人类 MCAT 基因的 AβPP 转基因小鼠比 AβPP 小鼠多活 5 个月。我们还发现,MCAT 在 MCAT/AβPP 转基因小鼠脑切片中的过度表达与全长 APP、CTF99、BACE1、Aβ 水平(40 和 42)、Aβ 沉积和氧化 DNA 损伤的降低显著相关与 AβPP 小鼠的脑切片相比。有趣的是,我们发现 MCAT/AβPP 小鼠中可溶性 APPα和 CTF83 的水平显著升高,与 AβPP 小鼠相比。这些数据提供了直接证据,证明氧化应激在 AD 发病机制中起主要作用,并且在表达 Aβ 的 MCAT 小鼠中,MCAT 可防止 APP 异常加工,降低不同年龄的小鼠的 Aβ 水平,并增强 Aβ 降解酶,对应于疾病进展的不同阶段。这些发现表明,靶向线粒体的分子可能是治疗 AD 患者的有效治疗方法。