Suppr超能文献

果蝇端粒相关序列重复处的蛋白质景观。

Protein landscape at Drosophila melanogaster telomere-associated sequence repeats.

机构信息

Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA.

出版信息

Mol Cell Biol. 2012 Jun;32(12):2170-82. doi: 10.1128/MCB.00010-12. Epub 2012 Apr 9.

Abstract

The specific set of proteins bound at each genomic locus contributes decisively to regulatory processes and to the identity of a cell. Understanding of the function of a particular locus requires the knowledge of what factors interact with that locus and how the protein composition changes in different cell types or during the response to internal and external signals. Proteomic analysis of isolated chromatin segments (PICh) was developed as a tool to target, purify, and identify proteins associated with a defined locus and was shown to allow the purification of human telomeric chromatin. Here we have developed this method to identify proteins that interact with the Drosophila telomere-associated sequence (TAS) repeats. Several of the purified factors were validated as novel TAS-bound proteins by chromatin immunoprecipitation, and the Brahma complex was confirmed as a dominant modifier of telomeric position effect through the use of a genetic test. These results offer information on the efficacy of applying the PICh protocol to loci with sequence more complex than that found at human telomeres and identify proteins that bind to the TAS repeats, which might contribute to TAS biology and chromatin silencing.

摘要

特定的蛋白质组结合在每个基因组位置,对调控过程和细胞的身份起决定性作用。了解特定基因座的功能需要知道哪些因素与该基因座相互作用,以及在不同的细胞类型或对内部和外部信号的反应中,蛋白质组成如何变化。分离染色质片段的蛋白质组学分析(PICh)被开发为一种靶向、纯化和鉴定与特定基因座相关的蛋白质的工具,并已被证明可用于纯化人类端粒染色质。在这里,我们开发了这种方法来鉴定与果蝇端粒相关序列(TAS)重复序列相互作用的蛋白质。通过染色质免疫沉淀验证了几种纯化的因子是新的 TAS 结合蛋白,并且通过遗传测试证实了 Brahma 复合物是端粒位置效应的主要修饰因子。这些结果提供了有关将 PICh 方案应用于比人类端粒中发现的序列更复杂的基因座的有效性的信息,并鉴定了与 TAS 重复序列结合的蛋白质,这些蛋白质可能有助于 TAS 生物学和染色质沉默。

相似文献

1
Protein landscape at Drosophila melanogaster telomere-associated sequence repeats.
Mol Cell Biol. 2012 Jun;32(12):2170-82. doi: 10.1128/MCB.00010-12. Epub 2012 Apr 9.
2
Purification of proteins associated with specific genomic Loci.
Cell. 2009 Jan 9;136(1):175-86. doi: 10.1016/j.cell.2008.11.045.
5
HP1 is distributed within distinct chromatin domains at Drosophila telomeres.
Genetics. 2008 Sep;180(1):121-31. doi: 10.1534/genetics.108.090647. Epub 2008 Aug 24.
6
Three distinct chromatin domains in telomere ends of polytene chromosomes in Drosophila melanogaster Tel mutants.
J Cell Sci. 2005 Dec 1;118(Pt 23):5465-77. doi: 10.1242/jcs.02654. Epub 2005 Nov 8.
7
The Analysis of Pendolino (peo) Mutants Reveals Differences in the Fusigenic Potential among Drosophila Telomeres.
PLoS Genet. 2015 Jun 25;11(6):e1005260. doi: 10.1371/journal.pgen.1005260. eCollection 2015 Jun.
9
HipHop interacts with HOAP and HP1 to protect Drosophila telomeres in a sequence-independent manner.
EMBO J. 2010 Feb 17;29(4):819-29. doi: 10.1038/emboj.2009.394. Epub 2010 Jan 7.
10
Genomic analysis of Drosophila melanogaster telomeres: full-length copies of HeT-A and TART elements at telomeres.
Mol Biol Evol. 2004 Sep;21(9):1613-9. doi: 10.1093/molbev/msh174. Epub 2004 May 26.

引用本文的文献

1
Lysine-36 of Drosophila histone H3.3 supports adult longevity.
G3 (Bethesda). 2024 Apr 3;14(4). doi: 10.1093/g3journal/jkae030.
2
Lysine-36 of histone H3.3 supports adult longevity.
bioRxiv. 2023 Dec 13:2023.09.28.559962. doi: 10.1101/2023.09.28.559962.
3
Multiple Roles of dXNP and dADD1- Orthologs of ATRX Chromatin Remodeler.
Int J Mol Sci. 2023 Nov 18;24(22):16486. doi: 10.3390/ijms242216486.
7
Versatile and efficient chromatin pull-down methodology based on DNA triple helix formation.
Sci Rep. 2018 Apr 12;8(1):5925. doi: 10.1038/s41598-018-24417-9.
8
dCas9-targeted locus-specific protein isolation method identifies histone gene regulators.
Proc Natl Acad Sci U S A. 2018 Mar 20;115(12):E2734-E2741. doi: 10.1073/pnas.1718844115. Epub 2018 Mar 5.
9
dAdd1 and dXNP prevent genome instability by maintaining HP1a localization at Drosophila telomeres.
Chromosoma. 2017 Dec;126(6):697-712. doi: 10.1007/s00412-017-0634-9. Epub 2017 Jul 7.
10
Proteomics to study DNA-bound and chromatin-associated gene regulatory complexes.
Hum Mol Genet. 2016 Oct 1;25(R2):R106-R114. doi: 10.1093/hmg/ddw208. Epub 2016 Jul 11.

本文引用的文献

1
A protein complex network of Drosophila melanogaster.
Cell. 2011 Oct 28;147(3):690-703. doi: 10.1016/j.cell.2011.08.047.
2
The DEK oncoprotein is a Su(var) that is essential to heterochromatin integrity.
Genes Dev. 2011 Apr 1;25(7):673-8. doi: 10.1101/gad.2036411.
3
In vivo analysis of proteomes and interactomes using Parallel Affinity Capture (iPAC) coupled to mass spectrometry.
Mol Cell Proteomics. 2011 Jun;10(6):M110.002386. doi: 10.1074/mcp.M110.002386. Epub 2011 Mar 29.
4
Development of expression-ready constructs for generation of proteomic libraries.
Methods Mol Biol. 2011;723:257-72. doi: 10.1007/978-1-61779-043-0_17.
5
Role for cohesin in the formation of a heterochromatic domain at fission yeast subtelomeres.
Mol Cell Biol. 2011 Mar;31(5):1088-97. doi: 10.1128/MCB.01290-10. Epub 2010 Dec 28.
6
Comprehensive analysis of the chromatin landscape in Drosophila melanogaster.
Nature. 2011 Mar 24;471(7339):480-5. doi: 10.1038/nature09725. Epub 2010 Dec 22.
7
Perturbation analysis of heterochromatin-mediated gene silencing and somatic inheritance.
PLoS Genet. 2010 Sep 9;6(9):e1001095. doi: 10.1371/journal.pgen.1001095.
8
Rm62, a DEAD-box RNA helicase, complexes with DSP1 in Drosophila embryos.
Genesis. 2010 Apr;48(4):244-53. doi: 10.1002/dvg.20609.
9
Protein complex of Drosophila ATRX/XNP and HP1a is required for the formation of pericentric beta-heterochromatin in vivo.
J Biol Chem. 2010 May 14;285(20):15027-15037. doi: 10.1074/jbc.M109.064790. Epub 2010 Feb 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验