Suppr超能文献

低钾饮食加或不加 NaCl 补充对沿肾单位的 Na+、K+和 H2O 转运体丰度的影响。

Effects of K+-deficient diets with and without NaCl supplementation on Na+, K+, and H2O transporters' abundance along the nephron.

机构信息

Department of Cell and Neurobiology, Keck School of Medicine of University of Southern California, Los Angeles, California, USA.

出版信息

Am J Physiol Renal Physiol. 2012 Jul 1;303(1):F92-104. doi: 10.1152/ajprenal.00032.2012. Epub 2012 Apr 11.

Abstract

Dietary potassium (K(+)) restriction and hypokalemia have been reported to change the abundance of most renal Na(+) and K(+) transporters and aquaporin-2 isoform, but results have not been consistent. The aim of this study was to reexamine Na(+), K(+) and H(2)O transporters' pool size regulation in response to removing K(+) from a diet containing 0.74% NaCl, as well as from a diet containing 2% NaCl (as found in American diets) to blunt reducing total diet electrolytes. Sprague-Dawley rats (n = 5-6) were fed for 6 days with one of these diets: 2% KCl, 0.74% NaCl (2K1Na, control chow) compared with 0.03% KCl, 0.74% NaCl (0K1Na); or 2% KCl, 2%NaCl (2K2Na) compared with 0.03% KCl, 2% NaCl (0K2Na, Na(+) replete). In both 0K1Na and 0K2Na there were significant decreases in: 1) plasma [K(+)] (<2.5 mM); 2) urinary K(+) excretion (<5% of control); 3) urine osmolality and plasma [aldosterone], as well as 4) an increase in urine volume and medullary hypertrophy. The 0K2Na group had the lowest [aldosterone] (172.0 ± 17.4 pg/ml) and lower blood pressure (93.2 ± 4.9 vs. 112.0 ± 3.1 mmHg in 2K2Na). Transporter pool size regulation was determined by quantitative immunoblotting of renal cortex and medulla homogenates. The only differences measured in both 0K1Na and 0K2Na groups were a 20-30% decrease in cortical β-ENaC, 30-40% increases in kidney-specific Ste20/SPS1-related proline/alanine-rich kinase, and a 40% increase in medullary sodium pump abundance. The following proteins were not significantly changed in both the 0 K groups: Na(+)/H(+) exchanger isoform 3; Na(+)-K(+)-Cl(-) cotransporter; Na(+)-Cl(-) cotransporter, oxidative stress response kinase-1; renal outer medullary K(+) channel; autosomal recessive hypercholesterolemia; c-Src, aquaporin 2 isoform; or renin. Thus, despite profound hypokalemia and renal K(+) conservation, we did not confirm many of the changes that were previously reported. We predict that changes in transporter distribution and activity are likely more important for conserving K(+) than changes in total abundance.

摘要

饮食钾(K(+))限制和低钾血症已被报道会改变大多数肾脏 Na(+) 和 K(+) 转运体和水通道蛋白-2 同工型的丰度,但结果并不一致。本研究的目的是重新检查 Na(+)、K(+) 和 H(2)O 转运体的池大小调节,以响应从含有 0.74%NaCl 的饮食中去除 K(+),以及从含有 2%NaCl(如美国饮食中发现的)的饮食中去除 K(+),以减轻总饮食电解质。Sprague-Dawley 大鼠(n = 5-6)用以下饮食之一喂养 6 天:2%KCl,0.74%NaCl(2K1Na,对照饲料)与 0.03%KCl,0.74%NaCl(0K1Na);或 2%KCl,2%NaCl(2K2Na)与 0.03%KCl,2%NaCl(0K2Na,Na(+) 充足)。在 0K1Na 和 0K2Na 中均有以下明显变化:1)血浆[K(+)](<2.5mM);2)尿 K(+)排泄量(<对照的 5%);3)尿渗透压和血浆[醛固酮],以及 4)尿量增加和髓质肥大。0K2Na 组的[醛固酮]最低(172.0 ± 17.4 pg/ml),血压也最低(93.2 ± 4.9 与 2K2Na 中的 112.0 ± 3.1mmHg)。转运体池大小调节通过定量免疫印迹法测定肾皮质和髓质匀浆。在 0K1Na 和 0K2Na 组中仅测量到以下差异:皮质β-ENaC 减少 20-30%,肾脏特异性 Ste20/SPS1 相关脯氨酸/丙氨酸丰富激酶增加 30-40%,髓质钠泵丰度增加 40%。在这两个 0K 组中,以下蛋白质均无明显变化:Na(+) / H(+)交换体同工型 3;Na(+) - K(+) - Cl(-)共转运体;Na(+) - Cl(-)共转运体,氧化应激反应激酶-1;肾外髓质 K(+)通道;常染色体隐性高胆固醇血症;c-Src,水通道蛋白 2 同工型;或肾素。因此,尽管低钾血症和肾脏 K(+) 储存严重,但我们并未证实以前报道的许多变化。我们预测,转运体分布和活性的变化可能比总丰度的变化更重要,更有利于 K(+)的储存。

相似文献

6
Effects of extreme potassium stress on blood pressure and renal tubular sodium transport.极端钾胁迫对血压和肾小管钠转运的影响。
Am J Physiol Renal Physiol. 2020 Jun 1;318(6):F1341-F1356. doi: 10.1152/ajprenal.00527.2019. Epub 2020 Apr 13.

引用本文的文献

3
Potassium homeostasis: sensors, mediators, and targets.钾离子稳态:感受器、介质和靶标。
Pflugers Arch. 2022 Aug;474(8):853-867. doi: 10.1007/s00424-022-02718-3. Epub 2022 Jun 21.
10
Hypokalemia: a clinical update.低钾血症:临床最新进展
Endocr Connect. 2018 Apr;7(4):R135-R146. doi: 10.1530/EC-18-0109. Epub 2018 Mar 14.

本文引用的文献

2
Acute and chronic regulation of aldosterone production.醛固酮分泌的急性和慢性调节。
Mol Cell Endocrinol. 2012 Mar 24;350(2):151-62. doi: 10.1016/j.mce.2011.07.034. Epub 2011 Aug 4.
3
Cellular and molecular basis of increased ammoniagenesis in potassium deprivation.钾缺乏时氨生成增加的细胞和分子基础。
Am J Physiol Renal Physiol. 2011 Nov;301(5):F969-78. doi: 10.1152/ajprenal.00010.2011. Epub 2011 Jul 27.
4
Role of BK channels in hypertension and potassium secretion.BK 通道在高血压和钾分泌中的作用。
Curr Opin Nephrol Hypertens. 2011 Sep;20(5):512-7. doi: 10.1097/MNH.0b013e3283488889.
6
Conservation of Na+ vs. K+ by the rat cortical collecting duct.大鼠皮质集合管对钠钾的保钠排钾作用。
Am J Physiol Renal Physiol. 2011 Jul;301(1):F14-20. doi: 10.1152/ajprenal.00705.2010. Epub 2011 Mar 30.
7
Differential regulation of ROMK (Kir1.1) in distal nephron segments by dietary potassium.膳食钾对远曲小管各段 ROMK(Kir1.1)的差异调节。
Am J Physiol Renal Physiol. 2011 Jun;300(6):F1385-93. doi: 10.1152/ajprenal.00592.2010. Epub 2011 Mar 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验