Information and Computational Sciences, James Hutton Institute, Dundee, Scotland, United Kingdom.
PLoS One. 2012;7(4):e34498. doi: 10.1371/journal.pone.0034498. Epub 2012 Apr 5.
An Escherichia coli O104:H4 outbreak in Germany in summer 2011 caused 53 deaths, over 4000 individual infections across Europe, and considerable economic, social and political impact. This outbreak was the first in a position to exploit rapid, benchtop high-throughput sequencing (HTS) technologies and crowdsourced data analysis early in its investigation, establishing a new paradigm for rapid response to disease threats. We describe a novel strategy for design of diagnostic PCR primers that exploited this rapid draft bacterial genome sequencing to distinguish between E. coli O104:H4 outbreak isolates and other pathogenic E. coli isolates, including the historical hæmolytic uræmic syndrome (HUSEC) E. coli HUSEC041 O104:H4 strain, which possesses the same serotype as the outbreak isolates.
METHODOLOGY/PRINCIPAL FINDINGS: Primers were designed using a novel alignment-free strategy against eleven draft whole genome assemblies of E. coli O104:H4 German outbreak isolates from the E. coli O104:H4 Genome Analysis Crowd-Sourcing Consortium website, and a negative sequence set containing 69 E. coli chromosome and plasmid sequences from public databases. Validation in vitro against 21 'positive' E. coli O104:H4 outbreak and 32 'negative' non-outbreak EHEC isolates indicated that individual primer sets exhibited 100% sensitivity for outbreak isolates, with false positive rates of between 9% and 22%. A minimal combination of two primers discriminated between outbreak and non-outbreak E. coli isolates with 100% sensitivity and 100% specificity.
CONCLUSIONS/SIGNIFICANCE: Draft genomes of isolates of disease outbreak bacteria enable high throughput primer design and enhanced diagnostic performance in comparison to traditional molecular assays. Future outbreak investigations will be able to harness HTS rapidly to generate draft genome sequences and diagnostic primer sets, greatly facilitating epidemiology and clinical diagnostics. We expect that high throughput primer design strategies will enable faster, more precise responses to future disease outbreaks of bacterial origin, and help to mitigate their societal impact.
2011 年夏季德国发生的大肠杆菌 O104:H4 疫情导致 53 人死亡,欧洲超过 4000 人感染,造成了巨大的经济、社会和政治影响。此次疫情是首次在调查初期利用快速、台式高通量测序(HTS)技术和众包数据分析的疫情,为快速应对疾病威胁建立了新的模式。我们描述了一种新的诊断 PCR 引物设计策略,该策略利用这种快速的细菌基因组草图测序来区分大肠杆菌 O104:H4 疫情分离株和其他致病性大肠杆菌分离株,包括历史上的溶血性尿毒综合征(HUSEC)大肠杆菌 HUSEC041 O104:H4 菌株,该菌株与疫情分离株具有相同的血清型。
方法/主要发现:使用一种新的无比对策略针对大肠杆菌 O104:H4 德国疫情分离株的 11 个基因组草图全序列,这些序列来自大肠杆菌 O104:H4 基因组分析众包联盟网站,以及一个包含 69 个来自公共数据库的大肠杆菌染色体和质粒序列的阴性序列集来设计引物。在体外对 21 个“阳性”大肠杆菌 O104:H4 疫情分离株和 32 个“阴性”非疫情肠出血性大肠杆菌(EHEC)分离株进行验证表明,个别引物对疫情分离株的敏感性为 100%,假阳性率为 9%-22%。两个引物的最小组合可区分疫情和非疫情大肠杆菌分离株,敏感性为 100%,特异性为 100%。
结论/意义:疾病爆发细菌分离株的草图基因组可实现高通量引物设计,与传统分子检测相比提高了诊断性能。未来的疫情调查将能够迅速利用 HTS 生成草图基因组序列和诊断引物对,极大地促进了流行病学和临床诊断。我们预计,高通量引物设计策略将能够更快、更准确地应对未来细菌性疾病的爆发,并有助于减轻其对社会的影响。