Department of Chemistry, University of Hawaii, Honolulu, Hawaii 96822, USA.
J Phys Chem A. 2012 May 3;116(17):4348-55. doi: 10.1021/jp210470u. Epub 2012 Apr 24.
The Al(3)H(9) and Al(3)H(7) potential energy surfaces were explored using quantum chemistry calculations to investigate the H(2) loss mechanism from Al(3)H(9), which provide new insights into hydrogen production from bulk alane, AlH(3), a possible energy storage material. We present results of B3LYP/6-311++G(d,p) calculations for the various Al(3)H(9) and Al(3)H(7) optimized local minima and transition state structures along with some reaction pathways for their interconversion. We find the energy for Al(3)H(9) decomposition into Al(2)H(6) and AlH(3) is slightly lower than that for H(2) loss and Al(3)H(7) formation, but the calculations show that H(2) loss from Al(3)H(9) is a lower energy process than for losing hydrogen from either Al(2)H(6) or AlH(3). We found four transition state structures and reaction pathways for Al(3)H(9) → Al(3)H(7) + H(2), where the lowest energy activation barrier is around 25-73 kJ/mol greater than the experimental value for H(2) loss from bulk alane. Intrinsic reaction coordinate calculations show that the H(2) loss pathway involves considerable rearrangement of the H atom positions around a single Al center. Three of the pathways start with the formation of an AlH(3) moiety, which then enables a terminal H on the AlH(3) to get within 1.1 to 1.2 Å of a nearby bridging H atom. The bridging and terminal H atoms eventually combine to form H(2) and leave Al(3)H(9). One implication of these H(2) loss reaction pathways is that, since the H atoms in bulk alanes are all at bridging positions, if a similar H(2) loss mechanism were to apply to bulk alane, then H(2) loss would most likely occur on the bulk alane surface or at a defect site where there should be more terminal H atoms available for reaction with nearby bridging H atoms.
采用量子化学计算方法研究了 Al(3)H(9) 和 Al(3)H(7) 的势能面,以探究从 Al(3)H(9) 中失去 H(2) 的机制,这为从大块烷基金属铝(AlH(3))中制取氢气提供了新的思路,而大块烷基金属铝(AlH(3))是一种可能的储能材料。我们呈现了 B3LYP/6-311++G(d,p) 计算得到的各种 Al(3)H(9) 和 Al(3)H(7) 优化的局部极小值和过渡态结构以及它们相互转化的一些反应途径的结果。我们发现 Al(3)H(9) 分解为 Al(2)H(6) 和 AlH(3) 的能量略低于失去 H(2) 和形成 Al(3)H(7) 的能量,但计算表明,从 Al(3)H(9) 中失去 H(2) 是比从 Al(2)H(6) 或 AlH(3) 中失去氢更低能量的过程。我们发现了 Al(3)H(9) → Al(3)H(7) + H(2) 的四个过渡态结构和反应途径,其中最低能量的活化能垒比大块烷基金属铝中 H(2) 损失的实验值高约 25-73 kJ/mol。本征反应坐标计算表明,H(2) 损失途径涉及单个 Al 中心周围 H 原子位置的大量重排。三条途径都始于 AlH(3) 部分的形成,然后使 AlH(3) 上的末端 H 能够靠近一个邻近的桥接 H 原子的距离为 1.1 至 1.2 Å。桥接和末端 H 原子最终结合形成 H(2) 并留下 Al(3)H(9)。这些 H(2) 损失反应途径的一个含义是,由于大块烷基金属铝中的 H 原子都处于桥接位置,如果类似的 H(2) 损失机制适用于大块烷基金属铝,那么 H(2) 损失最有可能发生在大块烷基金属铝的表面或缺陷位置,因为那里应该有更多的末端 H 原子可用于与邻近的桥接 H 原子反应。