Mathworks, 3 Apple Hill Drive, Natick, Massachusetts 01760, USA.
J Acoust Soc Am. 2012 Apr;131(4):3051-68. doi: 10.1121/1.3682054.
Studies on consonant perception under noise conditions typically describe the average consonant error as exponential in the Articulation Index (AI). While this AI formula nicely fits the average error over all consonants, it does not fit the error for any consonant at the utterance level. This study analyzes the error patterns of six stop consonants /p, t, k, b, d, g/ with four vowels (/α/, /ε/, /I/, /ae/), at the individual consonant (i.e., utterance) level. The findings include that the utterance error is essentially zero for signal to noise ratios (SNRs) at least -2 dB, for >78% of the stop consonant utterances. For these utterances, the error is essentially a step function in the SNR at the utterance's detection threshold. This binary error dependence is consistent with the audibility of a single binary defining acoustic feature, having zero error above the feature's detection threshold. Also 11% of the sounds have high error, defined as ≥ 20% for SNRs greater than or equal to -2 dB. A grand average across many such sounds, having a natural distribution in thresholds, results in the error being exponential in the AI measure, as observed. A detailed analysis of the variance from the AI error is provided along with a Bernoulli-trials analysis of the statistical significance.
在噪声环境下进行的辅音感知研究通常将清晰度指数(AI)中的辅音平均错误描述为指数函数。虽然这个 AI 公式很好地适用于所有辅音的平均错误,但它不适用于任何特定音素的错误。本研究分析了六个塞音/p, t, k, b, d, g/与四个元音/α/, /ε/, /I/, /ae/在单个音素(即发音)水平上的错误模式。研究结果表明,对于信噪比(SNR)至少为-2dB 的情况,至少有 78%的塞音发音的发音错误基本为零。对于这些发音,错误在发音检测阈值的 SNR 处基本上是阶跃函数。这种二进制错误的依赖性与单个二进制定义声学特征的可听度一致,在特征检测阈值以上,该特征的错误为零。另外,11%的发音错误较高,定义为 SNR 大于或等于-2dB 时大于等于 20%。许多此类声音的总体平均值在阈值上具有自然分布,导致错误呈 AI 测量的指数函数,正如所观察到的。沿着贝努利试验分析提供了对 AI 误差方差的详细分析以及统计显著性的分析。