Department of Statistics, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA.
J Chem Phys. 2012 Apr 14;136(14):144102. doi: 10.1063/1.3701175.
The weighted histogram analysis method (WHAM) is routinely used for computing free energies and expectations from multiple ensembles. Existing derivations of WHAM require observations to be discretized into a finite number of bins. Yet, WHAM formulas seem to hold even if the bin sizes are made arbitrarily small. The purpose of this article is to demonstrate both the validity and value of the multi-state Bennet acceptance ratio (MBAR) method seen as a binless extension of WHAM. We discuss two statistical arguments to derive the MBAR equations, in parallel to the self-consistency and maximum likelihood derivations already known for WHAM. We show that the binless method, like WHAM, can be used not only to estimate free energies and equilibrium expectations, but also to estimate equilibrium distributions. We also provide a number of useful results from the statistical literature, including the determination of MBAR estimators by minimization of a convex function. This leads to an approach to the computation of MBAR free energies by optimization algorithms, which can be more effective than existing algorithms. The advantages of MBAR are illustrated numerically for the calculation of absolute protein-ligand binding free energies by alchemical transformations with and without soft-core potentials. We show that binless statistical analysis can accurately treat sparsely distributed interaction energy samples as obtained from unmodified interaction potentials that cannot be properly analyzed using standard binning methods. This suggests that binless multi-state analysis of binding free energy simulations with unmodified potentials offers a straightforward alternative to the use of soft-core potentials for these alchemical transformations.
加权直方图分析方法(WHAM)通常用于从多个集合中计算自由能和期望。WHAM 的现有推导要求观测值离散化为有限数量的箱。然而,即使箱的大小被任意减小,WHAM 公式似乎仍然成立。本文的目的是证明多态 Bennett 接受率(MBAR)方法作为 WHAM 的无箱扩展的有效性和价值。我们讨论了两种统计论证来推导出 MBAR 方程,与已经为 WHAM 所知的自洽性和最大似然推导并行。我们表明,无箱方法与 WHAM 一样,不仅可以用于估计自由能和平衡期望,还可以用于估计平衡分布。我们还从统计文献中提供了一些有用的结果,包括通过最小化凸函数来确定 MBAR 估计量。这导致了通过优化算法计算 MBAR 自由能的方法,该方法比现有算法更有效。我们通过使用带和不带软核势的化学变换来计算绝对蛋白质 - 配体结合自由能,数值说明了 MBAR 的优势。我们表明,无箱统计分析可以准确地处理稀疏分布的相互作用能样本,这些样本是从无法使用标准箱方法进行适当分析的未修改相互作用势中获得的。这表明,对于使用未修改势的结合自由能模拟的无箱多态分析,为这些化学变换使用软核势提供了一种简单的替代方法。