Suppr超能文献

用于分子模拟的稳健自动截断点选择

Robust Automated Truncation Point Selection for Molecular Simulations.

作者信息

Clark Finlay, Cole Daniel J, Michel Julien

机构信息

EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K.

School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.

出版信息

J Chem Theory Comput. 2025 Jan 14;21(1):88-101. doi: 10.1021/acs.jctc.4c01359. Epub 2024 Dec 23.

Abstract

Quantities calculated from molecular simulations are often subject to an initial bias due to unrepresentative starting configurations. Initial data are usually discarded to reduce bias. Chodera's method for automated truncation point selection [J. Chem. Theory Comput. 2016, 12, 4, 1799-1805] is popular but has not been thoroughly assessed. We reformulate White's marginal standard error rule to provide a spectrum of truncation point selection heuristics that differ in their treatment of autocorrelation. These include a method effectively equivalent to Chodera's. We test these methods on ensembles of synthetic time series modeled on free energy change estimates from long absolute binding free energy calculations. Methods that more thoroughly account for autocorrelation often show late and variable truncation times, while methods that less thoroughly account for autocorrelation often show early truncation, relative to the optimal truncation point. This increases variance and bias, respectively. We recommend a method that achieves robust performance across our test sets by balancing these two extremes. None of the methods reliably detected insufficient sampling. All heuristics tested are implemented in the open-source Python package RED (github.com/fjclark/red).

摘要

从分子模拟计算得到的量常常会因起始构型不具代表性而存在初始偏差。通常会舍弃初始数据以减少偏差。乔德拉的自动截断点选择方法[《化学理论与计算杂志》,2016年,12卷,第4期,1799 - 1805页]很流行,但尚未得到全面评估。我们重新表述了怀特的边际标准误差规则,以提供一系列截断点选择启发式方法,这些方法在自相关处理方面有所不同。其中包括一种实际上等同于乔德拉方法的方法。我们在基于长时间绝对结合自由能计算得到的自由能变化估计值建模的合成时间序列集合上测试了这些方法。相对于最优截断点,更全面考虑自相关的方法通常显示出较晚且变化的截断时间,而较少全面考虑自相关的方法通常显示出较早的截断。这分别增加了方差和偏差。我们推荐一种通过平衡这两个极端情况在我们的测试集上实现稳健性能的方法。没有一种方法能可靠地检测到采样不足。所有测试的启发式方法都在开源Python包RED(github.com/fjclark/red)中实现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2632/11736681/dbf93bc18634/ct4c01359_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验