Suppr超能文献

用于估算蛋白质-配体结合亲和力的结合能分布分析方法(BEDAM)

The Binding Energy Distribution Analysis Method (BEDAM) for the Estimation of Protein-Ligand Binding Affinities.

作者信息

Gallicchio Emilio, Lapelosa Mauro, Levy Ronald M

机构信息

BioMaPS Institute for Quantitative Biology and Department of Chemistry and Chemical Biology, Rutgers the State University of New Jersey, Piscataway, NJ 08854.

出版信息

J Chem Theory Comput. 2010 Sep 14;6(9):2961-2977. doi: 10.1021/ct1002913.

Abstract

The Binding Energy Distribution Analysis Method (BEDAM) for the computation of receptor-ligand standard binding free energies with implicit solvation is presented. The method is based on a well established statistical mechanics theory of molecular association. It is shown that, in the context of implicit solvation, the theory is homologous to the test particle method of solvation thermodynamics with the solute-solvent potential represented by the effective binding energy of the protein-ligand complex. Accordingly, in BEDAM the binding constant is computed by means of a weighted integral of the probability distribution of the binding energy obtained in the canonical ensemble in which the ligand is positioned in the binding site but the receptor and the ligand interact only with the solvent continuum. It is shown that the binding energy distribution encodes all of the physical effects of binding. The balance between binding enthalpy and entropy is seen in our formalism as a balance between favorable and unfavorable binding modes which are coupled through the normalization of the binding energy distribution function. An efficient computational protocol for the binding energy distribution based on the AGBNP2 implicit solvent model, parallel Hamiltonian replica exchange sampling and histogram reweighting is developed. Applications of the method to a set of known binders and non-binders of the L99A and L99A/M102Q mutants of T4 lysozyme receptor are illustrated. The method is able to discriminate without error binders from non-binders, and the computed standard binding free energies of the binders are found to be in good agreement with experimental measurements. Analysis of the results reveals that the binding affinities of these systems reflect the contributions from multiple conformations spanning a wide range of binding energies.

摘要

本文介绍了用于计算受体 - 配体标准结合自由能并考虑隐式溶剂化的结合能分布分析方法(BEDAM)。该方法基于成熟的分子缔合统计力学理论。结果表明,在隐式溶剂化的背景下,该理论与溶剂化热力学的测试粒子方法同源,其中溶质 - 溶剂势由蛋白质 - 配体复合物的有效结合能表示。因此,在BEDAM中,结合常数通过在正则系综中获得的结合能概率分布的加权积分来计算,在该系综中配体位于结合位点,但受体和配体仅与溶剂连续体相互作用。结果表明,结合能分布编码了结合的所有物理效应。在我们的形式体系中,结合焓和熵之间的平衡表现为通过结合能分布函数的归一化相互耦合的有利和不利结合模式之间的平衡。基于AGBNP2隐式溶剂模型、并行哈密顿副本交换采样和直方图重加权,开发了一种用于结合能分布的高效计算协议。展示了该方法在T4溶菌酶受体的L99A和L99A/M102Q突变体的一组已知结合剂和非结合剂上的应用。该方法能够无误地区分结合剂和非结合剂,并且发现结合剂的计算标准结合自由能与实验测量值高度一致。对结果的分析表明,这些系统的结合亲和力反映了跨越广泛结合能范围的多种构象的贡献。

相似文献

引用本文的文献

10
Computational drug design of novel COVID-19 inhibitor.新型新冠病毒抑制剂的计算机辅助药物设计
Bull Natl Res Cent. 2022;46(1):210. doi: 10.1186/s42269-022-00892-z. Epub 2022 Jul 15.

本文引用的文献

6
The AGBNP2 Implicit Solvation Model.AGBNP2隐式溶剂化模型。
J Chem Theory Comput. 2009 Jul 31;5(9):2544-2564. doi: 10.1021/ct900234u.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验