Suppr超能文献

荧光寿命成像显微镜在脑肿瘤图像引导手术中的应用。

Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery.

机构信息

University of California, Davis, Department of Biomedical Engineering, Davis, California 95616, USA.

出版信息

J Biomed Opt. 2010 Sep-Oct;15(5):056022. doi: 10.1117/1.3486612.

Abstract

We demonstrate for the first time the application of an endoscopic fluorescence lifetime imaging microscopy (FLIM) system to the intraoperative diagnosis of glioblastoma multiforme (GBM). The clinically compatible FLIM prototype integrates a gated (down to 0.2 ns) intensifier imaging system with a fiber-bundle (fiber image guide of 0.5 mm diameter, 10,000 fibers with a gradient index lens objective 0.5 NA, and 4 mm field of view) to provide intraoperative access to the surgical field. Experiments conducted in three patients undergoing craniotomy for tumor resection demonstrate that FLIM-derived parameters allow for delineation of tumor from normal cortex. For example, at 460±25-nm wavelength band emission corresponding to NADH/NADPH fluorescence, GBM exhibited a weaker fluorescence intensity (35% less, p-value<0.05) and a longer lifetime τGBM-Amean=1.59±0.24 ns than normal cortex τNC-Amean=1.28±0.04 ns (p-value<0.005). Current results demonstrate the potential use of FLIM as a tool for image-guided surgery of brain tumors.

摘要

我们首次展示了内窥镜荧光寿命成像显微镜(FLIM)系统在多形性胶质母细胞瘤(GBM)术中诊断中的应用。该临床兼容的 FLIM 原型集成了门控(低至 0.2 ns)增强成像系统和光纤束(光纤图像引导器直径为 0.5 毫米,10000 根光纤,梯度指数透镜物镜 0.5 NA,4 毫米视场),为手术现场提供术中通道。在三名接受开颅手术切除肿瘤的患者中进行的实验表明,FLIM 衍生的参数允许区分肿瘤与正常皮层。例如,在对应于 NADH/NADPH 荧光的 460±25nm 波长带发射处,GBM 表现出较弱的荧光强度(少 35%,p 值<0.05)和较长的寿命 τGBM-Amean=1.59±0.24 ns,而正常皮层 τNC-Amean=1.28±0.04 ns(p 值<0.005)。目前的结果表明,FLIM 有潜力作为脑肿瘤图像引导手术的工具。

相似文献

1
Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery.
J Biomed Opt. 2010 Sep-Oct;15(5):056022. doi: 10.1117/1.3486612.
2
Endoscopic fluorescence lifetime imaging for in vivo intraoperative diagnosis of oral carcinoma.
Microsc Microanal. 2013 Aug;19(4):791-8. doi: 10.1017/S1431927613001530. Epub 2013 May 23.
3
Fluorescence-guided brain tumor surgery.
World Neurosurg. 2012 Dec;78(6):559-64. doi: 10.1016/j.wneu.2012.10.015. Epub 2012 Oct 4.
4
Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma.
Opt Lett. 2009 Jul 1;34(13):2081-3. doi: 10.1364/ol.34.002081.
5
Fluorescence-guided resection of experimental malignant glioma using cetuximab-IRDye 800CW.
Br J Neurosurg. 2015;29(6):850-8. doi: 10.3109/02688697.2015.1056090. Epub 2015 Jun 15.
6
7
Comparison of intraoperative fluorescence and MRI image guided neuronavigation in malignant brain tumours, a prospective controlled study.
Photodiagnosis Photodyn Ther. 2013 Dec;10(4):356-61. doi: 10.1016/j.pdpdt.2013.03.006. Epub 2013 Apr 17.
8
First-in-human study of PET and optical dual-modality image-guided surgery in glioblastoma using Ga-IRDye800CW-BBN.
Theranostics. 2018 Apr 3;8(9):2508-2520. doi: 10.7150/thno.25599. eCollection 2018.
10
Bioluminescence imaging and two-photon microscopy guided laser ablation of GBM decreases tumor burden.
Theranostics. 2018 Jul 16;8(15):4072-4085. doi: 10.7150/thno.25357. eCollection 2018.

引用本文的文献

1
Widefield frequency-domain autofluorescence lifetime imaging for detecting breast cancer in murine xenograft tumor tissues.
J Biomed Opt. 2025 Feb;30(Suppl 2):S23911. doi: 10.1117/1.JBO.30.S2.S23911. Epub 2025 Sep 12.
3
Label-Free Metabolic Imaging In Vivo by Two-Photon Fluorescence Lifetime Endomicroscopy.
ACS Photonics. 2022 Dec 21;9(12):4017-4029. doi: 10.1021/acsphotonics.2c01493. Epub 2022 Dec 9.
5
Single-sample image-fusion upsampling of fluorescence lifetime images.
Sci Adv. 2024 May 24;10(21):eadn0139. doi: 10.1126/sciadv.adn0139. Epub 2024 May 23.
6
5-ALA induced PpIX fluorescence spectroscopy in neurosurgery: a review.
Front Neurosci. 2024 Jan 29;18:1310282. doi: 10.3389/fnins.2024.1310282. eCollection 2024.
7
8
Two-photon fluorescence lifetime imaging microscopy of NADH metabolism in HIV-1 infected cells and tissues.
Front Immunol. 2023 Aug 16;14:1213180. doi: 10.3389/fimmu.2023.1213180. eCollection 2023.
9
In vivo characterization of the human glioblastoma infiltrative edge with label-free intraoperative fluorescence lifetime imaging.
Biomed Opt Express. 2023 Apr 24;14(5):2196-2208. doi: 10.1364/BOE.481304. eCollection 2023 May 1.
10
Intraoperative detection of IDH-mutant glioma using fluorescence lifetime imaging.
J Biophotonics. 2023 Apr;16(4):e202200291. doi: 10.1002/jbio.202200291. Epub 2022 Dec 23.

本文引用的文献

1
3
Therapeutic advances in malignant glioma: current status and future prospects.
Neuroimaging Clin N Am. 2009 Nov;19(4):647-56. doi: 10.1016/j.nic.2009.08.015.
4
Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma.
Opt Lett. 2009 Jul 1;34(13):2081-3. doi: 10.1364/ol.34.002081.
5
Glioma extent of resection and its impact on patient outcome.
Neurosurgery. 2008 Apr;62(4):753-64; discussion 264-6. doi: 10.1227/01.neu.0000318159.21731.cf.
6
Glioblastoma in adults.
Crit Rev Oncol Hematol. 2008 Aug;67(2):139-52. doi: 10.1016/j.critrevonc.2008.02.005. Epub 2008 Apr 3.
7
In vivo optical spectroscopy detects radiation damage in brain tissue.
Neurosurgery. 2005 Sep;57(3):518-25; discussion 518-25. doi: 10.1227/01.neu.0000170559.48166.ac.
8
Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy.
J Biol Chem. 2005 Jul 1;280(26):25119-26. doi: 10.1074/jbc.M502475200. Epub 2005 Apr 29.
9
Fluorescence lifetime spectroscopy of glioblastoma multiforme.
Photochem Photobiol. 2004 Jul-Aug;80:98-103. doi: 10.1562/2003-12-09-RA-023.1.
10
Fast model-free deconvolution of fluorescence decay for analysis of biological systems.
J Biomed Opt. 2004 Jul-Aug;9(4):743-52. doi: 10.1117/1.1752919.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验