Institut für Biologie und Biotechnologie der Pflanzen, Westf. Wilhelms-Universität Münster, Hindenburgplatz 55, 48143 Münster, Germany.
Fungal Genet Biol. 2012 Jun;49(6):483-97. doi: 10.1016/j.fgb.2012.03.005. Epub 2012 Apr 6.
Targeted gene inactivation is extensively used in the plant pathogenic fungus Botrytis cinerea for gene function analysis while strategies involving the expression of reporter genes have been rarely used due to the lack of appropriate expression vectors. Hence, an approach was initiated to establish an expression system for B.cinerea possessing the following features: (i) the targeted integration of constructs at defined gene loci which are dispensable under standard growth conditions, (ii) the use of promoter and terminator sequences allowing optimal gene expression, (iii) the use of codon-optimized reporter genes (Leroch et al., 2011), (iv) the use of multiple selection markers, and (v) the incorporation of a highly efficient cloning system. A set of basic vectors was generated by yeast recombinational cloning permitting a variety of protein fusions. The successful application of the expression system for labeling F-actin, the cytosol, the nuclei, the membrane, the ER and the peroxisomes was demonstrated. In addition, cloning vectors for bimolecular fluorescence complementation (BiFC) analyses for studying protein-protein interactions in situ were generated by splitting the codon-optimized gfp. The functionality of the constructed BiFC vectors was validated by demonstrating the interaction of the two white collar-like transcription factors BcWCL1 and BcWCL2 in the nuclei of growing B. cinerea hyphae.
靶向基因失活被广泛应用于植物病原真菌灰葡萄孢(Botrytis cinerea)的基因功能分析,而由于缺乏合适的表达载体,涉及报告基因表达的策略则很少被使用。因此,我们开始着手建立一个具有以下特征的灰葡萄孢表达系统:(i)在标准生长条件下非必需的特定基因座靶向整合构建体,(ii)使用允许最佳基因表达的启动子和终止子序列,(iii)使用密码子优化的报告基因(Leroch 等人,2011),(iv)使用多个选择标记,以及(v)整合高效的克隆系统。通过酵母重组克隆生成了一套基本载体,允许进行各种蛋白融合。该表达系统成功地用于标记 F-肌动蛋白、细胞质、细胞核、膜、内质网和过氧化物酶体。此外,通过分割密码子优化的 GFP 生成了用于研究原位蛋白-蛋白相互作用的双分子荧光互补(BiFC)分析的克隆载体。通过证明两个白色 collar 样转录因子 BcWCL1 和 BcWCL2 在生长中的灰葡萄孢菌丝体细胞核中的相互作用,验证了构建的 BiFC 载体的功能。