Waksman Institute of Microbiology and Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
J Biotechnol. 2012 Nov 30;162(1):97-104. doi: 10.1016/j.jbiotec.2012.03.026. Epub 2012 Apr 4.
Hydrogen is produced by a [NiFe]-hydrogenase in the cyanobacterium Arthrospira (Spirulina) maxima during autofermentation of photosynthetically accumulated glycogen under dark anaerobic conditions. Herein we show that elimination of H₂ backpressure by continuous H₂ removal ("milking") can significantly increase the yield of H₂ in this strain. We show that "milking" by continuous selective consumption of H₂ using an electrochemical cell produces the maximum increase in H₂ yield (11-fold) and H₂ rate (3.4-fold), which is considerably larger than through "milking" by non-selective dilution of the biomass in media (increases H₂ yield 3.7-fold and rate 3.1-fold). Exhaustive autofermentation under electrochemical milking conditions consumes >98% of glycogen and 27.6% of biomass over 7-8 days and extracts 39% of the energy content in glycogen as H₂. Non-selective dilution stimulates H₂ production by shifting intracellular equilibria competing for NADH from excreted products and terminal electron sinks into H₂ production. Adding a mixture of the carbon fermentative products shifts the equilibria towards reactants, resulting in increased intracellular NADH and an increased H₂ yield (1.4-fold). H₂ production is sustained for a period of time up to 7days, after which the PSII activity of the cells decreases by 80-90%, but can be restored by regeneration under photoautotrophic growth.
氢气是由蓝细菌(螺旋藻属)中的[NiFe]-氢化酶在光合作用积累的糖原在黑暗厌氧条件下的自动发酵过程中产生的。在此,我们表明,通过连续去除氢气(“挤奶”)消除 H₂ 的反压可以显著提高该菌株的 H₂ 产量。我们表明,使用电化学电池连续选择性消耗 H₂ 的“挤奶”可产生最大的 H₂ 产量增加(11 倍)和 H₂ 速率增加(3.4 倍),这比通过生物量在培养基中的非选择性稀释(H₂ 产量增加 3.7 倍,速率增加 3.1 倍)“挤奶”要大得多。在电化学挤奶条件下的彻底自动发酵在 7-8 天内消耗了超过 98%的糖原和 27.6%的生物质,并从糖原中提取了 39%的能量作为 H₂。非选择性稀释通过将细胞内竞争 NADH 的平衡从排泄产物和末端电子汇转移到 H₂ 生产中,刺激了 H₂ 的产生。添加碳发酵产物的混合物会使平衡向反应物方向移动,导致细胞内 NADH 增加,H₂ 产量增加(1.4 倍)。H₂ 的产生可以持续一段时间,最长可达 7 天,之后细胞的 PSII 活性下降 80-90%,但可以在光自养生长下通过再生恢复。