Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.
Appl Environ Microbiol. 2010 Oct;76(19):6455-62. doi: 10.1128/AEM.00975-10. Epub 2010 Aug 6.
Sodium concentration cycling was examined as a new strategy for redistributing carbon storage products and increasing autofermentative product yields following photosynthetic carbon fixation in the cyanobacterium Arthrospira (Spirulina) maxima. The salt-tolerant hypercarbonate strain CS-328 was grown in a medium containing 0.24 to 1.24 M sodium, resulting in increased biosynthesis of soluble carbohydrates to up to 50% of the dry weight at 1.24 M sodium. Hypoionic stress during dark anaerobic metabolism (autofermentation) was induced by resuspending filaments in low-sodium (bi)carbonate buffer (0.21 M), which resulted in accelerated autofermentation rates. For cells grown in 1.24 M NaCl, the fermentative yields of acetate, ethanol, and formate increase substantially to 1.56, 0.75, and 1.54 mmol/(g [dry weight] of cells·day), respectively (36-, 121-, and 6-fold increases in rates relative to cells grown in 0.24 M NaCl). Catabolism of endogenous carbohydrate increased by approximately 2-fold upon hypoionic stress. For cultures grown at all salt concentrations, hydrogen was produced, but its yield did not correlate with increased catabolism of soluble carbohydrates. Instead, ethanol excretion becomes a preferred route for fermentative NADH reoxidation, together with intracellular accumulation of reduced products of acetyl coenzyme A (acetyl-CoA) formation when cells are hypoionically stressed. In the absence of hypoionic stress, hydrogen production is a major beneficial pathway for NAD(+) regeneration without wasting carbon intermediates such as ethanol derived from acetyl-CoA. This switch presumably improves the overall cellular economy by retaining carbon within the cell until aerobic conditions return and the acetyl unit can be used for biosynthesis or oxidized via respiration for a much greater energy return.
我们研究了钠浓度循环,以期在蓝藻(螺旋藻)最大光合作用固定碳后,作为一种重新分配碳储存产物并提高自发酵产物产量的新策略。耐盐高碳酸盐菌株 CS-328 在含有 0.24 至 1.24 M 钠的培养基中生长,导致可溶性碳水化合物的生物合成增加到 1.24 M 钠时高达干重的 50%。在低钠(双)碳酸盐缓冲液(0.21 M)中悬浮丝体可诱导暗厌氧代谢(自发酵)中的低离子应激,从而加速自发酵速率。对于在 1.24 M NaCl 中生长的细胞,乙酸盐、乙醇和甲酸盐的发酵产率分别显著增加到 1.56、0.75 和 1.54 mmol/(g [干重]细胞·天)(相对于在 0.24 M NaCl 中生长的细胞,速率分别增加 36、121 和 6 倍)。低离子应激时,内源性碳水化合物的分解代谢增加了约 2 倍。对于在所有盐浓度下培养的培养物,均产生氢气,但产氢率与可溶性碳水化合物分解代谢的增加无关。相反,当细胞受到低离子应激时,乙醇的排出成为发酵性 NADH 再氧化的首选途径,同时细胞内还原产物乙酰辅酶 A(乙酰辅酶 A)形成的积累。在没有低离子应激的情况下,氢气的产生是 NAD(+) 再生的主要有益途径,而不会浪费碳中间产物,如来自乙酰辅酶 A 的乙醇。这种转变推测可以通过在有氧条件恢复之前将碳保留在细胞内,从而提高整体细胞经济性,并且乙酰基单元可用于生物合成或通过呼吸氧化以获得更大的能量回报。