Suppr超能文献

在蓝藻(螺旋藻)CS-328 的发酵过程中,钠离子梯度对能量守恒的贡献。

Contribution of a sodium ion gradient to energy conservation during fermentation in the cyanobacterium Arthrospira (Spirulina) maxima CS-328.

机构信息

Princeton University, Department of Chemistry and Princeton Environmental Institute, Princeton, New Jersey, USA.

出版信息

Appl Environ Microbiol. 2011 Oct;77(20):7185-94. doi: 10.1128/AEM.00612-11. Epub 2011 Sep 2.

Abstract

Sodium gradients in cyanobacteria play an important role in energy storage under photoautotrophic conditions but have not been well studied during autofermentative metabolism under the dark, anoxic conditions widely used to produce precursors to fuels. Here we demonstrate significant stress-induced acceleration of autofermentation of photosynthetically generated carbohydrates (glycogen and sugars) to form excreted organic acids, alcohols, and hydrogen gas by the halophilic, alkalophilic cyanobacterium Arthrospira (Spirulina) maxima CS-328. When suspended in potassium versus sodium phosphate buffers at the start of autofermentation to remove the sodium ion gradient, photoautotrophically grown cells catabolized more intracellular carbohydrates while producing 67% higher yields of hydrogen, acetate, and ethanol (and significant amounts of lactate) as fermentative products. A comparable acceleration of fermentative carbohydrate catabolism occurred upon dissipating the sodium gradient via addition of the sodium-channel blocker quinidine or the sodium-ionophore monensin but not upon dissipating the proton gradient with the proton-ionophore dinitrophenol (DNP). The data demonstrate that intracellular energy is stored via a sodium gradient during autofermentative metabolism and that, when this gradient is blocked, the blockage is compensated by increased energy conversion via carbohydrate catabolism.

摘要

在光合作用条件下,蓝细菌中的钠离子梯度在能量储存中起着重要作用,但在广泛用于生产燃料前体的黑暗缺氧条件下的自发酵代谢过程中,其作用尚未得到很好的研究。在这里,我们证明了嗜盐、嗜碱蓝细菌 Arthrospira(螺旋藻)CS-328 在受到压力时会显著加速光合作用产生的碳水化合物(糖原和糖)的自发酵,形成排泄的有机酸、醇和氢气。当在自发酵开始时用钾盐而非钠盐缓冲液悬浮时,通过去除钠离子梯度,在光自养条件下生长的细胞会分解更多的细胞内碳水化合物,同时产生 67%更高的氢气、乙酸盐和乙醇(以及大量的乳酸盐)作为发酵产物。通过添加钠离子通道阻滞剂奎尼丁或钠离子载体莫能菌素来消耗钠离子梯度,也会发生类似的发酵碳水化合物分解代谢的加速,但通过质子载体二硝基苯酚 (DNP) 消耗质子梯度则不会发生这种情况。这些数据表明,在自发酵代谢过程中,细胞内能量通过钠离子梯度储存,而当这种梯度被阻断时,通过碳水化合物分解代谢会增加能量转换来进行补偿。

相似文献

3
Enhancing biological hydrogen production from cyanobacteria by removal of excreted products.
J Biotechnol. 2012 Nov 30;162(1):97-104. doi: 10.1016/j.jbiotec.2012.03.026. Epub 2012 Apr 4.
6
Harvesting carbohydrate-rich Arthrospira platensis by spontaneous settling.
Bioresour Technol. 2015 Mar;180:16-21. doi: 10.1016/j.biortech.2014.12.084. Epub 2014 Dec 31.
7
Microwave support of the alcoholic fermentation process of cyanobacteria Arthrospira platensis.
Environ Sci Pollut Res Int. 2020 Jan;27(1):118-124. doi: 10.1007/s11356-019-05427-0. Epub 2019 May 23.
9
Quantitative proteomics analysis by iTRAQ revealed underlying changes in thermotolerance of Arthrospira platensis.
J Proteomics. 2017 Aug 8;165:119-131. doi: 10.1016/j.jprot.2017.06.015. Epub 2017 Jun 20.

引用本文的文献

2
3
Assembly of Using Ultra-Long Reads.
Front Microbiol. 2021 Apr 16;12:657995. doi: 10.3389/fmicb.2021.657995. eCollection 2021.
4
Edible Cyanobacterial Genus : Actual State of the Art in Cultivation Methods, Genetics, and Application in Medicine.
Front Microbiol. 2017 Dec 18;8:2541. doi: 10.3389/fmicb.2017.02541. eCollection 2017.
5
Exploring Components of the CO-Concentrating Mechanism in Alkaliphilic Cyanobacteria Through Genome-Based Analysis.
Comput Struct Biotechnol J. 2017 May 25;15:340-350. doi: 10.1016/j.csbj.2017.05.001. eCollection 2017.
8
Temporal Gene Expression of the Cyanobacterium Arthrospira in Response to Gamma Rays.
PLoS One. 2015 Aug 26;10(8):e0135565. doi: 10.1371/journal.pone.0135565. eCollection 2015.
9
The composition of the global and feature specific cyanobacterial core-genomes.
Front Microbiol. 2015 Mar 19;6:219. doi: 10.3389/fmicb.2015.00219. eCollection 2015.

本文引用的文献

1
Na(+) as coupling ion in energy transduction in extremophilic Bacteria and Archaea.
World J Microbiol Biotechnol. 1995 Jan;11(1):58-70. doi: 10.1007/BF00339136.
2
Osmotic adjustment in Spirulina platensis.
Planta. 1985 Mar;163(3):424-9. doi: 10.1007/BF00395153.
4
High-resolution structure of the rotor ring of a proton-dependent ATP synthase.
Nat Struct Mol Biol. 2009 Oct;16(10):1068-73. doi: 10.1038/nsmb.1678. Epub 2009 Sep 27.
5
Energy biotechnology with cyanobacteria.
Curr Opin Biotechnol. 2009 Jun;20(3):257-63. doi: 10.1016/j.copbio.2009.05.011. Epub 2009 Jun 17.
6
Energy from algae using microbial fuel cells.
Biotechnol Bioeng. 2009 Aug 15;103(6):1068-76. doi: 10.1002/bit.22346.
8
Hydrothermal acid pretreatment of Chlamydomonas reinhardtii biomass for ethanol production.
J Microbiol Biotechnol. 2009 Feb;19(2):161-6. doi: 10.4014/jmb.0810.578.
10
Global transcriptional response of the alkali-tolerant cyanobacterium Synechocystis sp. strain PCC 6803 to a pH 10 environment.
Appl Environ Microbiol. 2008 Sep;74(17):5276-84. doi: 10.1128/AEM.00883-08. Epub 2008 Jul 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验