Mathematical Biosciences Institute, Ohio State University, Columbus, OH 43210, USA.
Math Biosci. 2012 Jul;238(1):21-31. doi: 10.1016/j.mbs.2012.03.009. Epub 2012 Apr 13.
Many micro-organisms use chemotaxis for aggregation, resulting in stable patterns. In this paper, the amoeba Dictyostelium discoideum serves as a model organism for understanding the conditions for aggregation and classification of resulting patterns. To accomplish this, a 1D nonlinear diffusion equation with chemotaxis that models amoeba behavior is analyzed. A classification of the steady state solutions is presented, and a Lyapunov functional is used to determine conditions for stability of inhomogenous solutions. Changing the chemical sensitivity, production rate of the chemical attractant, or domain length can cause the system to transition from having an asymptotic steady state, to having asymptotically stable single-step solution and multi-stepped stable plateau solutions.
许多微生物利用化学趋性进行聚集,从而形成稳定的模式。在本文中,变形虫 D.discoideum 被用作模型生物,以了解聚集的条件和由此产生的模式分类。为此,分析了一个具有化学趋性的 1D 非线性扩散方程,该方程可用于模拟变形虫的行为。提出了定态解的分类,并使用李雅普诺夫函数来确定非齐次解的稳定性条件。改变化学敏感性、化学引诱剂的产生率或域长度会导致系统从具有渐近稳定的定态,过渡到具有渐近稳定的单步解和多步稳定的平台解。