Suppr超能文献

俄罗斯南部卡辛湖高盐沉积物中 Fe(II)氧化和 Fe(III)还原微生物的丰度、分布和活性。

Abundance, distribution, and activity of Fe(II)-oxidizing and Fe(III)-reducing microorganisms in hypersaline sediments of Lake Kasin, southern Russia.

机构信息

Geomicrobiology, Center for Applied Geosciences, University of Tübingen, Tübingen, Germany.

出版信息

Appl Environ Microbiol. 2012 Jun;78(12):4386-99. doi: 10.1128/AEM.07637-11. Epub 2012 Apr 13.

Abstract

The extreme osmotic conditions prevailing in hypersaline environments result in decreasing metabolic diversity with increasing salinity. Various microbial metabolisms have been shown to occur even at high salinity, including photosynthesis as well as sulfate and nitrate reduction. However, information about anaerobic microbial iron metabolism in hypersaline environments is scarce. We studied the phylogenetic diversity, distribution, and metabolic activity of iron(II)-oxidizing and iron(III)-reducing Bacteria and Archaea in pH-neutral, iron-rich salt lake sediments (Lake Kasin, southern Russia; salinity, 348.6 g liter(-1)) using a combination of culture-dependent and -independent techniques. 16S rRNA gene clone libraries for Bacteria and Archaea revealed a microbial community composition typical for hypersaline sediments. Most-probable-number counts confirmed the presence of 4.26 × 10(2) to 8.32 × 10(3) iron(II)-oxidizing Bacteria and 4.16 × 10(2) to 2.13 × 10(3) iron(III)-reducing microorganisms per gram dry sediment. Microbial iron(III) reduction was detected in the presence of 5 M NaCl, extending the natural habitat boundaries for this important microbial process. Quantitative real-time PCR showed that 16S rRNA gene copy numbers of total Bacteria, total Archaea, and species dominating the iron(III)-reducing enrichment cultures (relatives of Halobaculum gomorrense, Desulfosporosinus lacus, and members of the Bacilli) were highest in an iron oxide-rich sediment layer. Combined with the presented geochemical and mineralogical data, our findings suggest the presence of an active microbial iron cycle at salt concentrations close to the solubility limit of NaCl.

摘要

在高盐环境中,极端的渗透条件导致代谢多样性随着盐度的增加而减少。已经证明,即使在高盐度下,也存在各种微生物代谢,包括光合作用以及硫酸盐和硝酸盐的还原。然而,关于高盐环境中厌氧微生物铁代谢的信息却很少。我们使用培养依赖和非依赖技术的组合,研究了中性 pH、富铁盐湖沉积物(俄罗斯南部的卡辛湖;盐度为 348.6 g 升(-1))中氧化亚铁和还原铁的细菌和古菌的系统发育多样性、分布和代谢活性。细菌和古菌的 16S rRNA 基因克隆文库揭示了一种典型的高盐沉积物微生物群落组成。最可能数计数证实,每克干沉积物中存在 4.26×10(2)到 8.32×10(3)个氧化亚铁细菌和 4.16×10(2)到 2.13×10(3)个还原铁微生物。在存在 5 M NaCl 的情况下,检测到微生物铁(III)还原,这扩展了这一重要微生物过程的自然栖息地边界。定量实时 PCR 显示,总细菌、总古菌和主导铁(III)还原富集培养物(与 Halobaculum gomorrense、Desulfosporosinus lacus 和 Bacilli 有关的物种)的 16S rRNA 基因拷贝数在富氧化铁的沉积物层中最高。结合呈现的地球化学和矿物学数据,我们的发现表明在接近 NaCl 溶解度极限的盐浓度下存在活跃的微生物铁循环。

相似文献

2
Microbial diversity in anaerobic sediments at Rio Tinto, a naturally acidic environment with a high heavy metal content.
Appl Environ Microbiol. 2011 Sep;77(17):6085-93. doi: 10.1128/AEM.00654-11. Epub 2011 Jul 1.
3
Distribution and diversity of archaeal and bacterial ammonia oxidizers in salt marsh sediments.
Appl Environ Microbiol. 2009 Dec;75(23):7461-8. doi: 10.1128/AEM.01001-09. Epub 2009 Oct 2.
4
Microbial characterization of a subzero, hypersaline methane seep in the Canadian High Arctic.
ISME J. 2010 Oct;4(10):1326-39. doi: 10.1038/ismej.2010.57. Epub 2010 May 6.
5
Cultivation of autotrophic ammonia-oxidizing archaea from marine sediments in coculture with sulfur-oxidizing bacteria.
Appl Environ Microbiol. 2010 Nov;76(22):7575-87. doi: 10.1128/AEM.01478-10. Epub 2010 Sep 24.
6
Spatial distribution and abundances of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in mangrove sediments.
Appl Microbiol Biotechnol. 2011 Feb;89(4):1243-54. doi: 10.1007/s00253-010-2929-0. Epub 2010 Oct 16.
9
Extremophile microbiomes in acidic and hypersaline river sediments of Western Australia.
Environ Microbiol Rep. 2016 Feb;8(1):58-67. doi: 10.1111/1758-2229.12351. Epub 2015 Dec 21.
10
Repeated anaerobic microbial redox cycling of iron.
Appl Environ Microbiol. 2011 Sep;77(17):6036-42. doi: 10.1128/AEM.00276-11. Epub 2011 Jul 8.

引用本文的文献

1
Naturally Occurring Organohalogen Compounds-A Comprehensive Review.
Prog Chem Org Nat Prod. 2023;121:1-546. doi: 10.1007/978-3-031-26629-4_1.
2
Microbial mixotrophic denitrification using iron(II) as an assisted electron donor.
Water Res X. 2023 Mar 21;19:100176. doi: 10.1016/j.wroa.2023.100176. eCollection 2023 May 1.
3
Continuous cultivation of the lithoautotrophic nitrate-reducing Fe(II)-oxidizing culture KS in a chemostat bioreactor.
Environ Microbiol Rep. 2023 Aug;15(4):324-334. doi: 10.1111/1758-2229.13149. Epub 2023 Mar 29.
4
Comparative Genomic Insights into the Evolution of -Associated " Nanohaloarchaeota".
mSystems. 2022 Dec 20;7(6):e0066922. doi: 10.1128/msystems.00669-22. Epub 2022 Oct 19.
6
Salinity Impact on Composition and Activity of Nitrate-Reducing Fe(II)-Oxidizing Microorganisms in Saline Lakes.
Appl Environ Microbiol. 2022 May 24;88(10):e0013222. doi: 10.1128/aem.00132-22. Epub 2022 May 2.
7
Iron Elution from Iron and Steel Slag Using Bacterial Complex Identified from the Seawater.
Materials (Basel). 2021 Mar 17;14(6):1477. doi: 10.3390/ma14061477.
8
Microbial Responses to Simulated Salinization and Desalinization in the Sediments of the Qinghai-Tibetan Lakes.
Front Microbiol. 2020 Aug 7;11:1772. doi: 10.3389/fmicb.2020.01772. eCollection 2020.
9
Plutonium Oxidation States in the Waste Isolation Pilot Plant Repository.
Appl Geochem. 2020 May;116. doi: 10.1016/j.apgeochem.2020.104561.

本文引用的文献

2
Methanogenic diversity and activity in hypersaline sediments of the centre of the Napoli mud volcano, Eastern Mediterranean Sea.
Environ Microbiol. 2011 Aug;13(8):2078-91. doi: 10.1111/j.1462-2920.2011.02425.x. Epub 2011 Mar 7.
3
Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons.
Genome Res. 2011 Mar;21(3):494-504. doi: 10.1101/gr.112730.110. Epub 2011 Jan 6.
4
Neutrophilic iron-oxidizing "zetaproteobacteria" and mild steel corrosion in nearshore marine environments.
Appl Environ Microbiol. 2011 Feb;77(4):1405-12. doi: 10.1128/AEM.02095-10. Epub 2010 Dec 3.
5
Thermodynamic limits to microbial life at high salt concentrations.
Environ Microbiol. 2011 Aug;13(8):1908-23. doi: 10.1111/j.1462-2920.2010.02365.x. Epub 2010 Nov 5.
6
Sulfidogenesis under extremely haloalkaline conditions in soda lakes of Kulunda Steppe (Altai, Russia).
FEMS Microbiol Ecol. 2010 Aug;73(2):278-90. doi: 10.1111/j.1574-6941.2010.00901.x. Epub 2010 May 4.
7
Shifts in microbial community structure along an ecological gradient of hypersaline soils and sediments.
ISME J. 2010 Jun;4(6):829-38. doi: 10.1038/ismej.2010.3. Epub 2010 Feb 4.
9
Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities.
Appl Environ Microbiol. 2009 Dec;75(23):7537-41. doi: 10.1128/AEM.01541-09. Epub 2009 Oct 2.
10
Rhodobacter capsulatus catalyzes light-dependent Fe(II) oxidation under anaerobic conditions as a potential detoxification mechanism.
Appl Environ Microbiol. 2009 Nov;75(21):6639-46. doi: 10.1128/AEM.00054-09. Epub 2009 Aug 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验