Department Chemie der Ludwig-Maximilians-Universität, Butenandtstrasse 5-13 (Haus F), 81377 München, Germany.
Chemistry. 2012 Jun 11;18(24):7506-15. doi: 10.1002/chem.201102867. Epub 2012 Apr 13.
Short-lived pivaloylmetals, (H(3)C)(3)C-COM, were established as the reactive intermediates arising through thermal heterolytic expulsion of O=CtBu(2) from the overcrowded metal alkoxides tBuC(=O)-C(-OM)tBu(2) (M = MgX, Li, K). In all three cases, this fission step is counteracted by a faster return process, as shown through the trapping of tBu-COM by O=C(tBu)-C(CD(3))(3) with formation of the deuterated starting alkoxides. If generated in the absence of trapping agents, all three tBu-COM species "dimerize" to give the enediolates MO-C(tBu)=C(tBu)-OM along with O=CtBu(2) (2 equiv). A common-component rate depression by surplus O=CtBu(2) proves the existence of some free tBu-COM (separated from O=CtBu(2)); but companion intermediates with the traits of an undissociated complex such as tBu-COM & O=CtBu(2) had to be postulated. The slow fission step generating tBu-COMgX in THF levels the overall rates of dimerization, ketone addition, and deuterium incorporation. Formed by much faster fission steps, both tBu-COLi and tBu-COK add very rapidly to ketones and dimerize somewhat slower (but still fairly fast, as shown through trapping of the emerging O=CtBu(2) by H(3)CLi or PhCH(2)K, respectively). At first sight surprisingly, the rapid fission, return, and dimerization steps combine to very slow overall decay rates of the precursor Li and K alkoxides in the absence of trapping agents: A detailed study revealed that the fast fission step, generating tBu-COLi in THF, is followed by a kinetic partitioning that is heavily biased toward return and against the product-forming dimerization. Both tBu-COLi and tBu-COK form tBu-CH=O with HN(SiMe(3))(3), but only tBu-COK is basic enough for being protonated by the precursor acyloin tBuC(=O)-C(-OH)tBu(2) .
短寿命的酰基金属化合物 (H(3)C)(3)C-COM,被确立为通过热异裂从拥挤的金属烷氧基化物 tBuC(=O)-C(-OM)tBu(2) (M = MgX、Li、K) 中逐出 O=CtBu(2) 而产生的反应中间体。在所有三种情况下,这种裂变步骤都被更快的返回过程所抵消,这通过 O=C(tBu)-C(CD(3))(3) 与形成氘代起始烷氧基化物的 tBu-COM 捕获来证明。如果在没有捕获剂的情况下生成,所有三种 tBu-COM 物质都会“二聚化”生成 MO-C(tBu)=C(tBu)-OM 以及 O=CtBu(2) (2 当量)。过量的 O=CtBu(2) 对常见组分的速率降低证明了存在一些游离的 tBu-COM(与 O=CtBu(2) 分离);但必须假设存在具有未离解配合物特征的伴生中间体,如 tBu-COM 和 O=CtBu(2)。在 THF 中生成 tBu-COMgX 的缓慢裂变步骤使二聚化、酮加成和氘掺入的总速率达到平衡。由更快的裂变步骤形成的 tBu-COLi 和 tBu-COK 非常迅速地加成到酮上,并且二聚化的速度稍慢(但仍然相当快,如通过分别用 H(3)CLi 或 PhCH(2)K 捕获出现的 O=CtBu(2) 所示)。乍一看令人惊讶的是,在没有捕获剂的情况下,Li 和 K 烷氧基的快速裂变、返回和二聚化步骤结合起来导致前体的总衰减速率非常慢:一项详细的研究表明,在 THF 中生成 tBu-COLi 的快速裂变步骤之后,是一个动力学分配过程,该过程严重偏向于返回,不利于产物形成的二聚化。tBu-COLi 和 tBu-COK 都与 HN(SiMe(3))(3) 形成 tBu-CH=O,但只有 tBu-COK 足够碱性,可被前体酰基醇 tBuC(=O)-C(-OH)tBu(2) 质子化。