Lu Zhenming, He Zhe, Xu Hongyu, Shi Jinsong, Xu Zhenghong
Laboratory ofPharmaceutical Engineering, School of Medicine and Pharmaceutics, Jiangnan University, Wuxi 214122, China.
Sheng Wu Gong Cheng Xue Bao. 2011 Dec;27(12):1773-9.
To illustrate the complex fermentation process of submerged culture of Antrodia camphorata ATCC 200183, we observed the morphology change of this filamentous fungus. Then we used two optimization models namely response surface methodology (RSM) and artificial neural network (ANN) to model the fermentation process of Antrodia camphorata. By genetic algorithm (GA), we optimized the inoculum size and medium components for Antrodia camphorata production. The results show that fitness and prediction accuracy of ANN model was higher when compared to those of RSM model. Using GA, we optimized the input space of ANN model, and obtained maximum biomass of 6.2 g/L at the GA-optimized concentrations of spore (1.76x 10(5) /mL) and medium components (glucose, 29.1 g/L; peptone, 9.3 g/L; and soybean flour, 2.8 g/L). The biomass obtained using the ANN-GA designed medium was (6.1+/-0.2) g/L which was in good agreement with the predicted value. The same optimization process may be used to improve the production of mycelia and bioactive metabolites from potent medicinal fungi by changing the fermentation parameters.
为阐明樟芝ATCC 200183深层培养的复杂发酵过程,我们观察了这种丝状真菌的形态变化。然后我们使用了两种优化模型,即响应面法(RSM)和人工神经网络(ANN)来模拟樟芝的发酵过程。通过遗传算法(GA),我们优化了樟芝生产的接种量和培养基成分。结果表明,与RSM模型相比,ANN模型的适应度和预测准确性更高。使用GA,我们优化了ANN模型的输入空间,并在GA优化的孢子浓度(1.76x10(5)/mL)和培养基成分(葡萄糖,29.1 g/L;蛋白胨,9.3 g/L;大豆粉,2.8 g/L)下获得了6.2 g/L的最大生物量。使用ANN-GA设计的培养基获得的生物量为(6.1±0.2)g/L,与预测值吻合良好。通过改变发酵参数,相同的优化过程可用于提高强效药用真菌的菌丝体和生物活性代谢产物的产量。