Suppr超能文献

基于人工智能技术优化樟芝 ATCC 200183 发酵培养基生产三萜类物质。

Optimization of fermentation medium for triterpenoid production from Antrodia camphorata ATCC 200183 using artificial intelligence-based techniques.

机构信息

Laboratory of Pharmaceutical Engineering, School of Medicine and Pharmaceutics, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China.

出版信息

Appl Microbiol Biotechnol. 2011 Oct;92(2):371-9. doi: 10.1007/s00253-011-3544-4. Epub 2011 Aug 26.

Abstract

In this study, alteration in morphology of submergedly cultured Antrodia camphorata ATCC 200183 including arthroconidia, mycelia, external and internal structures of pellets was investigated. Two optimization models namely response surface methodology (RSM) and artificial neural network (ANN) were built to optimize the inoculum size and medium components for intracellular triterpenoid production from A. camphorata. Root mean squares error, R (2), and standard error of prediction given by ANN model were 0.31%, 0.99%, and 0.63%, respectively, while RSM model gave 1.02%, 0.98%, and 2.08%, which indicated that fitness and prediction accuracy of ANN model was higher when compared to RSM model. Furthermore, using genetic algorithm (GA), the input space of ANN model was optimized, and maximum triterpenoid production of 62.84 mg l(-1) was obtained at the GA-optimized concentrations of arthroconidia (1.78 × 10⁵ ml(-1)) and medium components (glucose, 25.25 g l(-1); peptone, 4.48 g l(-1); and soybean flour, 2.74 g l(-1)). The triterpenoid production experimentally obtained using the ANN-GA designed medium was 64.79 ± 2.32 mg l(-1) which was in agreement with the predicted value. The same optimization process may be used to optimize many environmental and genetic factors such as temperature and agitation that can also affect the triterpenoid production from A. camphorata and to improve the production of bioactive metabolites from potent medicinal fungi by changing the fermentation parameters.

摘要

在这项研究中,研究了浸没培养的樟芝(Antrodia camphorata)ATCC 200183 的形态变化,包括分生孢子、菌丝体、球形体的外部和内部结构。建立了两种优化模型,即响应面法(RSM)和人工神经网络(ANN),以优化樟芝细胞内三萜类化合物生产的接种量和培养基成分。ANN 模型的均方根误差、R²和预测标准误差分别为 0.31%、0.99%和 0.63%,而 RSM 模型分别为 1.02%、0.98%和 2.08%,这表明 ANN 模型的拟合度和预测精度高于 RSM 模型。此外,通过遗传算法(GA)对 ANN 模型的输入空间进行了优化,在 GA 优化的接种量(1.78×10⁵ ml⁻¹)和培养基成分(葡萄糖,25.25 g l⁻¹;蛋白胨,4.48 g l⁻¹;和豆粉,2.74 g l⁻¹)下,获得了 62.84 mg l⁻¹的最大三萜产量。使用 ANN-GA 设计的培养基实验获得的三萜产量为 64.79±2.32 mg l⁻¹,与预测值一致。该优化过程可用于优化许多环境和遗传因素,如温度和搅拌,这些因素也会影响樟芝三萜类化合物的生产,并通过改变发酵参数来提高有潜力的药用真菌生物活性代谢产物的产量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验