Geoscience Centre Göttingen, Göttingen, Germany.
Geobiology. 2012 Jul;10(4):280-97. doi: 10.1111/j.1472-4669.2012.00328.x. Epub 2012 Apr 17.
Fracture minerals within the 1.8-Ga-old Äspö Diorite (Sweden) were investigated for fossil traces of subterranean microbial activity. To track the potential organic and inorganic biosignatures, an approach combining complementary analytical techniques of high lateral resolution was applied to drill core material obtained at -450 m depth in the Äspö Hard Rock Laboratory. This approach included polarization microscopy, time-of-flight secondary ion mass spectrometry (ToF-SIMS), confocal Raman microscopy, electron microprobe (EMP) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The fracture mineral succession, consisting of fluorite and low-temperature calcite, showed a thin (20-100 μm), dark amorphous layer lining the boundary between the two phases. Microscopic investigations of the amorphous layer revealed corrosion marks and, in places, branched tubular structures within the fluorite. Geochemical analysis showed significant accumulations of Si, Al, Mg, Fe and the light rare earth elements (REE) in the amorphous layer. In the same area, ToF-SIMS imaging revealed abundant, partly functionalized organic moieties, for example, C(x)H(y)⁺, C(x)H(y)N⁺, C(x)H(y)O⁺. The presence of such functionalized organic compounds was corroborated by Raman imaging showing bands characteristic of C-C, C-N and C-O bonds. According to its organic nature and the abundance of relatively unstable N- and O- heterocompounds, the organic-rich amorphous layer is interpreted to represent the remains of a microbial biofilm that established much later than the initial cooling of the Precambrian host rock. Indeed, δ¹³C, δ¹⁸O and ⁸⁷Sr/⁸⁶Sr isotope data of the fracture minerals and the host rock point to an association with a fracture reactivation event in the most recent geological past.
对 18 亿年前的 Äspö 闪长岩(瑞典)中的断裂矿物进行了研究,以寻找地下微生物活动的化石痕迹。为了追踪潜在的有机和无机生物特征,采用了一种结合高横向分辨率互补分析技术的方法,对在 Äspö 硬岩实验室 -450 米深处获得的岩芯材料进行了研究。该方法包括偏光显微镜、飞行时间二次离子质谱(ToF-SIMS)、共聚焦拉曼显微镜、电子探针(EMP)和激光烧蚀电感耦合等离子体质谱(LA-ICP-MS)。由萤石和低温方解石组成的断裂矿物序列显示出一层薄(20-100 μm)、暗无定形层,位于两相之间的边界处。对无定形层的微观研究表明,在萤石中存在腐蚀痕迹,在某些地方存在分支管状结构。地球化学分析表明,无定形层中大量富集 Si、Al、Mg、Fe 和轻稀土元素(REE)。在同一区域,ToF-SIMS 成像显示出丰富的、部分官能化的有机基团,例如 C(x)H(y)⁺、C(x)H(y)N⁺、C(x)H(y)O⁺。拉曼成像显示出 C-C、C-N 和 C-O 键的特征带,证明了这些官能化有机化合物的存在。根据其有机性质和相对不稳定的 N 和 O 杂化合物的丰度,富含有机的无定形层被解释为代表后来建立的微生物生物膜的残留物,比前寒武纪母岩的初始冷却要晚得多。事实上,断裂矿物和母岩的 δ¹³C、δ¹⁸O 和 ⁸⁷Sr/⁸⁶Sr 同位素数据表明,它们与最近地质时期的断裂再活化事件有关。