Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.
Cell Transplant. 2012;21(9):2047-61. doi: 10.3727/096368912X637479. Epub 2012 Apr 10.
Ex vivo alloanergization of human immune cells, via allostimulation in the presence of costimulatory blockade with either a combination of anti-B7.1 and anti-B7.2 antibodies or first-generation cytotoxic T-lymphocyte antigen 4-immunoglobulin (CTLA4-Ig), induces alloantigen-specific hyporesponsiveness and expands alloantigen-specific regulatory T cells (Treg). We have successfully used this approach in the clinical setting of haploidentical hematopoietic stem cell transplantation. Recently, the in vivo use of a new second-generation CTLA4-Ig, belatacept, has shown promise in controlling alloresponses after transplantation of both human kidneys and islet cells. We therefore compared the efficiency of first- and second-generation CTLA4-Ig in alloanergizing human peripheral blood mononuclear cells (PBMCs) and investigated whether ex vivo alloanergization with belatacept could be used to engineer an alloantigen-specific immunoregulatory population of autologous cells suitable for administration to recipients of cellular or solid organ transplant recipients. Alloanergization of HLA-mismatched human PBMCs with belatacept resulted in a greater reduction in subsequent alloresponses than alloanergization with first generation CTLA4-Ig. Moreover, subsequent ex vivo re-exposure of alloanergized cells to alloantigen in the absence of belatacept resulted in a significant expansion of Tregs with enhanced alloantigen-specific suppressive function. Alloanergized PBMCs retained functional Epstein-Barr virus (EBV)-specific T-cell responses, and expanded Tregs did not suppress EBV-specific proliferation of autologous cells. These results suggest that ex vivo alloanergization with belatacept provides a platform to engineer populations of recipient Treg with specificity for donor alloantigens but without nonspecific suppressive capacity. The potential advantages of such cells for solid organ transplantation include (1) reduction of the need for nonspecific immunosuppression, (2) retention of pathogen-specific immunity, and (3) control of graft rejection, if used as an intervention.
体外同种异体免疫细胞的同种抗原特异性低反应性和扩增同种抗原特异性调节性 T 细胞(Treg)是通过在共刺激阻断的情况下进行同种刺激而诱导的,共刺激阻断可以使用抗 B7.1 和抗 B7.2 抗体的组合或第一代细胞毒性 T 淋巴细胞抗原 4-免疫球蛋白(CTLA4-Ig)来实现。我们已经成功地将这种方法应用于单倍体造血干细胞移植的临床环境中。最近,新型第二代 CTLA4-Ig,即 belatacept,在控制移植后同种异体反应方面显示出了前景,无论是在移植人类肾脏还是胰岛细胞方面。因此,我们比较了第一代和第二代 CTLA4-Ig 在同种异体免疫原性人类外周血单核细胞(PBMC)中的效率,并研究了 belatacept 体外同种异体免疫原性是否可用于构建适合给予细胞或实体器官移植受者的同种抗原特异性免疫调节细胞群体。与第一代 CTLA4-Ig 相比,belatacept 对 HLA 错配的人类 PBMC 的同种异体免疫原性导致随后的同种异体反应减少更多。此外,随后在没有 belatacept 的情况下将同种异体免疫原性细胞再次暴露于同种抗原中,导致 Treg 显著扩增,并增强了同种抗原特异性抑制功能。同种异体免疫原性的 PBMC 保留了功能性 Epstein-Barr 病毒(EBV)特异性 T 细胞反应,并且扩增的 Treg 不会抑制自体细胞的 EBV 特异性增殖。这些结果表明,belatacept 的体外同种异体免疫原性为构建具有供体同种抗原特异性但无非特异性抑制能力的受者 Treg 群体提供了一个平台。这种细胞用于实体器官移植的潜在优势包括:(1)减少对非特异性免疫抑制的需求,(2)保留病原体特异性免疫,(3)如果作为干预措施,则控制移植物排斥。