Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY 14642, USA.
J Bone Miner Res. 2012 Aug;27(8):1680-94. doi: 10.1002/jbmr.1639.
The WNT/β-catenin signaling pathway is a critical regulator of chondrocyte and osteoblast differentiation during multiple phases of cartilage and bone development. Although the importance of β-catenin signaling during the process of endochondral bone development has been previously appreciated using a variety of genetic models that manipulate β-catenin in skeletal progenitors and osteoblasts, genetic evidence demonstrating a specific role for β-catenin in committed growth-plate chondrocytes has been less robust. To identify the specific role of cartilage-derived β-catenin in regulating cartilage and bone development, we studied chondrocyte-specific gain- and loss-of-function genetic mouse models using the tamoxifen-inducible Col2Cre(ERT2) transgene in combination with β-catenin(fx(exon3)/wt) or β-catenin(fx/fx) floxed alleles, respectively. From these genetic models and biochemical data, three significant and novel findings were uncovered. First, cartilage-specific β-catenin signaling promotes chondrocyte maturation, possibly involving a bone morphogenic protein 2 (BMP2)-mediated mechanism. Second, cartilage-specific β-catenin facilitates primary and secondary ossification center formation via the induction of chondrocyte hypertrophy, possibly through enhanced matrix metalloproteinase (MMP) expression at sites of cartilage degradation, and potentially by enhancing Indian hedgehog (IHH) signaling activity to recruit vascular tissues. Finally, cartilage-specific β-catenin signaling promotes perichondrial bone formation possibly via a mechanism in which BMP2 and IHH paracrine signals synergize to accelerate perichondrial osteoblastic differentiation. The work presented here supports the concept that the cartilage-derived β-catenin signal is a central mediator for major events during endochondral bone formation, including chondrocyte maturation, primary and secondary ossification center development, vascularization, and perichondrial bone formation.
WNT/β-catenin 信号通路是软骨和骨发育多个阶段中软骨细胞和成骨细胞分化的关键调节剂。尽管已经使用各种遗传模型来操纵骨骼祖细胞和成骨细胞中的 β-catenin,从而充分认识到β-catenin 信号在软骨内骨发育过程中的重要性,但证明β-catenin 在特定的骺板软骨细胞中的作用的遗传证据则相对较少。为了确定软骨源性β-catenin在调节软骨和骨发育中的特定作用,我们研究了使用他莫昔芬诱导型 Col2Cre(ERT2) 转基因与β-catenin(fx(exon3)/wt)或β-catenin(fx/fx) floxed 等位基因分别结合的软骨细胞特异性获得和丧失功能的遗传小鼠模型。从这些遗传模型和生化数据中,发现了三个重要且新颖的发现。首先,软骨细胞特异性β-catenin 信号促进软骨细胞成熟,可能涉及骨形态发生蛋白 2 (BMP2) 介导的机制。其次,软骨细胞特异性β-catenin 通过诱导软骨细胞肥大促进初级和次级骨化中心的形成,可能通过在软骨降解部位增强基质金属蛋白酶 (MMP) 的表达,以及通过增强印度刺猬因子 (IHH) 信号活性来招募血管组织来实现。最后,软骨细胞特异性β-catenin 信号通过 BMP2 和 IHH 旁分泌信号协同加速软骨膜成骨细胞分化的机制促进软骨膜骨形成。这里介绍的工作支持了这样一种概念,即软骨源性β-catenin 信号是软骨内骨形成过程中主要事件的中央介质,包括软骨细胞成熟、初级和次级骨化中心发育、血管化和软骨膜骨形成。