Department of Orthodontics, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA.
State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China, 610041.
Int J Biol Sci. 2018 Jan 1;14(1):1-9. doi: 10.7150/ijbs.23165. eCollection 2018.
A recent breakthrough showing that direct trans-differentiation of chondrocytes into bone cells commonly occurs during endochondral bone formation in the growth plate, articular cartilage, and mandibular condylar cartilage suggests that chondrogenesis and osteogenesis are likely one continuous biological process instead of two separate processes. Yet, gene regulation of this cell transformation is largely unclear. Here, we employed cartilage-specific loss-of-function ( ) and gain-of-function ( ) models in the background (for better tracing the cell fate of chondrocytes) to study the role of in cell trans-differentiation. Using histological, immunohistochemical, and radiological methods combined with cell lineage tracing techniques, we showed that deletion of by either -Cre or -Cre resulted in greatly reduced cell trans-differentiation with a significant decrease in subchondral bone volume during mandibular condylar growth. Molecular studies demonstrated severe defects in cell proliferation and differentiation in both chondrocytes and bone cells. The gain of function studies (constitutive activation of with -Cre at ages of postnatal day 7, 4-weeks and 6-months) led to more bone cell trans-differentiation of chondrocytes in the mandibular condyle due to increased proliferation and accelerated chondrocyte differentiation with incipient osteogenic changes within the cartilage matrix, resulting in an increased volume of poorly-formed immature subchondral bone. These results support the notion that chondrogenesis and osteogenesis are one continuous process, in which signaling plays an essential role in the cell trans-differentiation of chondrocytes into bone cells during mandibular condylar development and growth.
最近的一项突破表明,在生长板、关节软骨和下颌髁突软骨的软骨内骨形成过程中,软骨细胞直接转化为骨细胞通常发生,这表明软骨生成和骨生成可能是一个连续的生物学过程,而不是两个独立的过程。然而,这种细胞转化的基因调控在很大程度上尚不清楚。在这里,我们在 背景下(为了更好地追踪软骨细胞的细胞命运)利用软骨特异性的功能丧失()和功能获得()模型来研究 在细胞转化中的作用。我们使用组织学、免疫组织化学和放射学方法结合细胞谱系追踪技术,表明无论是 -Cre 还是 -Cre 介导的 缺失,都会导致下颌髁突生长过程中软骨细胞的转化明显减少,导致软骨下骨体积显著减少。分子研究表明,软骨细胞和骨细胞的增殖和分化均存在严重缺陷。功能获得研究(在出生后第 7 天、4 周和 6 月龄时用 -Cre 使 持续激活)导致下颌髁软骨细胞中更多的骨细胞转化,这是由于增殖增加和软骨细胞分化加速,软骨基质中出现初始成骨变化,导致未成熟的软骨下骨体积增加。这些结果支持这样一种观点,即软骨生成和骨生成是一个连续的过程,其中 信号在软骨细胞向骨细胞的细胞转化中发挥重要作用下颌髁发育和生长过程。