Li Xian-Ying, Hu Shi-Min
IEEE Trans Vis Comput Graph. 2013 Feb;19(2):344-52. doi: 10.1109/TVCG.2012.109. Epub 2012 Apr 17.
Harmonic functions are the critical points of a Dirichlet energy functional, the linear projections of conformal maps. They play an important role in computer graphics, particularly for gradient-domain image processing and shape-preserving geometric computation. We propose Poisson coordinates, a novel transfinite interpolation scheme based on the Poisson integral formula, as a rapid way to estimate a harmonic function on a certain domain with desired boundary values. Poisson coordinates are an extension of the Mean Value coordinates (MVCs) which inherit their linear precision, smoothness, and kernel positivity. We give explicit formulas for Poisson coordinates in both continuous and 2D discrete forms. Superior to MVCs, Poisson coordinates are proved to be pseudoharmonic (i.e., they reproduce harmonic functions on n-dimensional balls). Our experimental results show that Poisson coordinates have lower Dirichlet energies than MVCs on a number of typical 2D domains (particularly convex domains). As well as presenting a formula, our approach provides useful insights for further studies on coordinates-based interpolation and fast estimation of harmonic functions.
调和函数是狄利克雷能量泛函的临界点,是共形映射的线性投影。它们在计算机图形学中起着重要作用,特别是在梯度域图像处理和保形几何计算方面。我们提出了泊松坐标,一种基于泊松积分公式的新型超限插值方案,作为一种在具有期望边界值的特定域上快速估计调和函数的方法。泊松坐标是均值坐标(MVCs)的扩展,继承了其线性精度、光滑性和核正性。我们给出了连续形式和二维离散形式的泊松坐标的显式公式。优于均值坐标,泊松坐标被证明是伪调和的(即它们在n维球上重现调和函数)。我们的实验结果表明,在一些典型的二维域(特别是凸域)上,泊松坐标的狄利克雷能量比均值坐标低。除了给出一个公式外,我们的方法还为基于坐标的插值和调和函数的快速估计的进一步研究提供了有用的见解。