Cao Juan, Xiao Yanyang, Chen Zhonggui, Wang Wenping, Bajaj Chandrajit
School of Mathematical Sciences, Xiamen University, Xiamen, 361005, China.
Fujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific Computation, Xiamen University, Xiamen, 361005, China.
Comput Aided Geom Des. 2018 Jul;63:149-163. doi: 10.1016/j.cagd.2018.05.005. Epub 2018 May 18.
We construct and analyze piecewise approximations of functional data on arbitrary 2D bounded domains using generalized barycentric finite elements, and particularly quadratic serendipity elements for planar polygons. We compare approximation qualities (precision/convergence) of these partition-of-unity finite elements through numerical experiments, using Wachspress coordinates, natural neighbor coordinates, Poisson coordinates, mean value coordinates, and quadratic serendipity bases over polygonal meshes on the domain. For a convex -sided polygon, the quadratic serendipity elements have 2 basis functions, associated in a Lagrange-like fashion to each vertex and each edge midpoint, rather than the usual ( + 1)/2 basis functions to achieve quadratic convergence. Two greedy algorithms are proposed to generate Voronoi meshes for adaptive functional/scattered data approximations. Experimental results show space/accuracy advantages for these quadratic serendipity finite elements on polygonal domains versus traditional finite elements over simplicial meshes. Polygonal meshes and parameter coefficients of the quadratic serendipity finite elements obtained by our greedy algorithms can be further refined using an -optimization to improve the piecewise functional approximation. We conduct several experiments to demonstrate the efficacy of our algorithm for modeling features/discontinuities in functional data/image approximation.
我们使用广义重心有限元,特别是针对平面多边形的二次偶然单元,在任意二维有界域上构建并分析函数数据的分段逼近。我们通过数值实验,使用瓦克斯普雷斯坐标、自然邻域坐标、泊松坐标、均值坐标以及域上多边形网格的二次偶然基,比较这些单位分解有限元的逼近质量(精度/收敛性)。对于凸边多边形,二次偶然单元有2个基函数,以类似拉格朗日的方式与每个顶点和每条边的中点相关联,而不是通常的( + 1)/2个基函数来实现二次收敛。提出了两种贪心算法来生成用于自适应函数/散乱数据逼近的沃罗诺伊网格。实验结果表明,与单纯形网格上的传统有限元相比,这些二次偶然有限元在多边形域上具有空间/精度优势。通过我们的贪心算法获得的二次偶然有限元的多边形网格和参数系数可以使用 - 优化进一步细化,以改善分段函数逼近。我们进行了几次实验,以证明我们的算法在函数数据/图像逼近中对特征/不连续性建模的有效性。