Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
Proc Natl Acad Sci U S A. 2012 May 1;109(18):7103-8. doi: 10.1073/pnas.1201582109. Epub 2012 Apr 16.
KCNQ1 (Kv7.1) is a unique member of the superfamily of voltage-gated K(+) channels in that it displays a remarkable range of gating behaviors tuned by coassembly with different β subunits of the KCNE family of proteins. To better understand the basis for the biophysical diversity of KCNQ1 channels, we here investigate the basis of KCNQ1 gating in the absence of β subunits using voltage-clamp fluorometry (VCF). In our previous study, we found the kinetics and voltage dependence of voltage-sensor movements are very similar to those of the channel gate, as if multiple voltage-sensor movements are not required to precede gate opening. Here, we have tested two different hypotheses to explain KCNQ1 gating: (i) KCNQ1 voltage sensors undergo a single concerted movement that leads to channel opening, or (ii) individual voltage-sensor movements lead to channel opening before all voltage sensors have moved. Here, we find that KCNQ1 voltage sensors move relatively independently, but that the channel can conduct before all voltage sensors have activated. We explore a KCNQ1 point mutation that causes some channels to transition to the open state even in the absence of voltage-sensor movement. To interpret these results, we adopt an allosteric gating scheme wherein KCNQ1 is able to transition to the open state after zero to four voltage-sensor movements. This model allows for widely varying gating behavior, depending on the relative strength of the opening transition, and suggests how KCNQ1 could be controlled by coassembly with different KCNE family members.
KCNQ1(Kv7.1)是电压门控 K(+)通道超家族中的一个独特成员,因为它通过与 KCNE 家族的不同β亚基的共组装,显示出显著的门控行为范围。为了更好地理解 KCNQ1 通道生物物理多样性的基础,我们使用电压钳荧光法(VCF)研究了没有β亚基的 KCNQ1 门控的基础。在我们之前的研究中,我们发现电压传感器运动的动力学和电压依赖性与通道门非常相似,就好像在打开门之前不需要多个电压传感器的运动。在这里,我们检验了两种不同的假设来解释 KCNQ1 门控:(i)KCNQ1 电压传感器经历单一的协同运动,导致通道打开,或(ii)单个电压传感器运动导致通道打开,然后所有电压传感器才移动。在这里,我们发现 KCNQ1 电压传感器相对独立地移动,但通道可以在所有电压传感器都激活之前进行传导。我们探索了一种 KCNQ1 点突变,该突变导致一些通道即使在没有电压传感器运动的情况下也会过渡到开放状态。为了解释这些结果,我们采用了一种变构门控方案,其中 KCNQ1 在零到四个电压传感器运动后能够过渡到开放状态。该模型允许根据打开跃迁的相对强度,产生广泛变化的门控行为,并表明 KCNQ1 如何通过与不同的 KCNE 家族成员的共组装来进行控制。