Suppr超能文献

研究自动化文档分类对系统综述更新计划的潜在影响。

Studying the potential impact of automated document classification on scheduling a systematic review update.

机构信息

Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, USA.

出版信息

BMC Med Inform Decis Mak. 2012 Apr 19;12:33. doi: 10.1186/1472-6947-12-33.

Abstract

BACKGROUND

Systematic Reviews (SRs) are an essential part of evidence-based medicine, providing support for clinical practice and policy on a wide range of medical topics. However, producing SRs is resource-intensive, and progress in the research they review leads to SRs becoming outdated, requiring updates. Although the question of how and when to update SRs has been studied, the best method for determining when to update is still unclear, necessitating further research.

METHODS

In this work we study the potential impact of a machine learning-based automated system for providing alerts when new publications become available within an SR topic. Some of these new publications are especially important, as they report findings that are more likely to initiate a review update. To this end, we have designed a classification algorithm to identify articles that are likely to be included in an SR update, along with an annotation scheme designed to identify the most important publications in a topic area. Using an SR database containing over 70,000 articles, we annotated articles from 9 topics that had received an update during the study period. The algorithm was then evaluated in terms of the overall correct and incorrect alert rate for publications meeting the topic inclusion criteria, as well as in terms of its ability to identify important, update-motivating publications in a topic area.

RESULTS

Our initial approach, based on our previous work in topic-specific SR publication classification, identifies over 70% of the most important new publications, while maintaining a low overall alert rate.

CONCLUSIONS

We performed an initial analysis of the opportunities and challenges in aiding the SR update planning process with an informatics-based machine learning approach. Alerts could be a useful tool in the planning, scheduling, and allocation of resources for SR updates, providing an improvement in timeliness and coverage for the large number of medical topics needing SRs. While the performance of this initial method is not perfect, it could be a useful supplement to current approaches to scheduling an SR update. Approaches specifically targeting the types of important publications identified by this work are likely to improve results.

摘要

背景

系统评价(SRs)是循证医学的重要组成部分,为广泛的医学主题的临床实践和政策提供支持。然而,制作 SRs 需要大量资源,并且它们所审查的研究进展会导致 SRs 过时,需要更新。尽管已经研究了如何以及何时更新 SRs 的问题,但确定何时更新的最佳方法仍不清楚,因此需要进一步研究。

方法

在这项工作中,我们研究了基于机器学习的自动系统在 SR 主题内有新出版物可用时提供警报的潜在影响。其中一些新出版物尤为重要,因为它们报告的结果更有可能引发审查更新。为此,我们设计了一种分类算法来识别可能包含在 SR 更新中的文章,以及一种旨在识别主题领域内最重要出版物的注释方案。使用包含超过 70,000 篇文章的 SR 数据库,我们对在研究期间进行了更新的 9 个主题的文章进行了注释。然后,根据满足主题纳入标准的出版物的总体正确和错误警报率以及识别主题领域内重要更新驱动出版物的能力来评估算法。

结果

我们的初始方法基于我们之前在特定主题的 SR 出版物分类方面的工作,识别出了超过 70%的最重要的新出版物,同时保持了较低的总体警报率。

结论

我们使用基于信息学的机器学习方法对辅助 SR 更新计划过程的机会和挑战进行了初步分析。警报可能是 SR 更新计划、调度和资源分配的有用工具,为需要 SR 的大量医学主题提供了及时性和覆盖范围的改进。虽然这种初始方法的性能并不完美,但它可能是当前 SR 更新计划方法的有用补充。专门针对这项工作确定的重要出版物类型的方法很可能会提高结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98a5/3420236/59446f5df1ab/1472-6947-12-33-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验