Suppr超能文献

志贺氏菌侵袭宿主细胞过程中入侵部位宿主因子动态的层级结构。

Hierarchies of host factor dynamics at the entry site of Shigella flexneri during host cell invasion.

机构信息

Group Dynamics of Host-Pathogen Interactions, Institut Pasteur, Paris, France.

出版信息

Infect Immun. 2012 Jul;80(7):2548-57. doi: 10.1128/IAI.06391-11. Epub 2012 Apr 23.

Abstract

Shigella flexneri, the causative agent of bacillary dysentery, induces massive cytoskeletal rearrangement, resulting in its entry into nonphagocytic epithelial cells. The bacterium-engulfing membrane ruffles are formed by polymerizing actin, a process activated through injected bacterial effectors that target host small GTPases and tyrosine kinases. Once inside the host cell, S. flexneri escapes from the endocytic vacuole within minutes to move intra- and intercellularly. We quantified the fluorescence signals from fluorescently tagged host factors that are recruited to the site of pathogen entry and vacuolar escape. Quantitative time lapse fluorescence imaging revealed simultaneous recruitment of polymerizing actin, small GTPases of the Rho family, and tyrosine kinases. In contrast, we found that actin surrounding the vacuole containing bacteria dispersed first from the disassembling membranes, whereas other host factors remained colocalized with the membrane remnants. Furthermore, we found that the disassembly of the membrane remnants took place rapidly, within minutes after bacterial release into the cytoplasm. Superresolution visualization of galectin 3 through photoactivated localization microscopy characterized these remnants as small, specular, patchy structures between 30 and 300 nm in diameter. Using our experimental setup to track the time course of infection, we identified the S. flexneri effector IpgB1 as an accelerator of the infection pace, specifically targeting the entry step, but not vacuolar progression or escape. Together, our studies show that bacterial entry into host cells follows precise kinetics and that this time course can be targeted by the pathogen.

摘要

福氏志贺菌是细菌性痢疾的病原体,它会引起大量细胞骨架重排,从而使其进入非吞噬性上皮细胞。细菌吞噬膜的皱襞是通过聚合肌动蛋白形成的,这个过程通过注入靶向宿主小 GTP 酶和酪氨酸激酶的细菌效应子激活。一旦进入宿主细胞,S. flexneri 会在数分钟内从吞噬小泡中逃逸,从而在细胞内和细胞间移动。我们定量分析了荧光标记的宿主因子在病原体进入和空泡逃逸部位的荧光信号。定量延时荧光成像显示聚合肌动蛋白、Rho 家族的小 GTP 酶和酪氨酸激酶同时被招募。相比之下,我们发现围绕含有细菌的空泡的肌动蛋白首先从正在解体的膜上分散,而其他宿主因子仍然与膜残余物共定位。此外,我们发现膜残余物的解体在细菌释放到细胞质后几分钟内迅速发生。通过光激活定位显微镜对半乳糖凝集素 3 的超分辨率可视化表明,这些残余物是直径为 30 至 300nm 的小而规则、斑片状的结构。使用我们的实验设置来跟踪感染的时间进程,我们鉴定出 S. flexneri 的效应蛋白 IpgB1 是感染速度的加速器,它专门靶向进入步骤,而不是空泡进展或逃逸。总之,我们的研究表明,细菌进入宿主细胞遵循精确的动力学,并且这个时间过程可以被病原体靶向。

相似文献

1
Hierarchies of host factor dynamics at the entry site of Shigella flexneri during host cell invasion.
Infect Immun. 2012 Jul;80(7):2548-57. doi: 10.1128/IAI.06391-11. Epub 2012 Apr 23.
3
Macropinosomes are Key Players in Early Shigella Invasion and Vacuolar Escape in Epithelial Cells.
PLoS Pathog. 2016 May 16;12(5):e1005602. doi: 10.1371/journal.ppat.1005602. eCollection 2016 May.
4
Tracking the dynamic interplay between bacterial and host factors during pathogen-induced vacuole rupture in real time.
Cell Microbiol. 2010 Apr 1;12(4):545-56. doi: 10.1111/j.1462-5822.2010.01428.x. Epub 2010 Jan 11.
6
Monitoring Shigella flexneri vacuolar escape by flow cytometry.
Virulence. 2011 Jan-Feb;2(1):54-7. doi: 10.4161/viru.2.1.14666.
8
The type three secretion system effector protein IpgB1 promotes Shigella flexneri cell-to-cell spread through double-membrane vacuole escape.
PLoS Pathog. 2022 Feb 24;18(2):e1010380. doi: 10.1371/journal.ppat.1010380. eCollection 2022 Feb.
9
Molecular bases of epithelial cell invasion by Shigella flexneri.
Antonie Van Leeuwenhoek. 1998 Nov;74(4):191-7. doi: 10.1023/a:1001519806727.
10
Spatial, Temporal, and Functional Assessment of LC3-Dependent Autophagy in Shigella flexneri Dissemination.
Infect Immun. 2018 Jul 23;86(8). doi: 10.1128/IAI.00134-18. Print 2018 Aug.

引用本文的文献

1
RACK1 promotes actin-mediated invasion, motility, and cell-to-cell spreading.
iScience. 2023 Oct 14;26(11):108216. doi: 10.1016/j.isci.2023.108216. eCollection 2023 Nov 17.
2
An Experimental Adult Zebrafish Model for Pathogenesis, Transmission, and Vaccine Efficacy Studies.
Microbiol Spectr. 2022 Jun 29;10(3):e0034722. doi: 10.1128/spectrum.00347-22. Epub 2022 May 23.
3
NOD-Like Receptors: Guards of Cellular Homeostasis Perturbation during Infection.
Int J Mol Sci. 2021 Jun 23;22(13):6714. doi: 10.3390/ijms22136714.
4
SIK2 orchestrates actin-dependent host response upon infection.
Proc Natl Acad Sci U S A. 2021 May 11;118(19). doi: 10.1073/pnas.2024144118.
5
Shigella hijacks the exocyst to cluster macropinosomes for efficient vacuolar escape.
PLoS Pathog. 2020 Aug 31;16(8):e1008822. doi: 10.1371/journal.ppat.1008822. eCollection 2020 Aug.
6
Actin Assembly around the Shigella-Containing Vacuole Promotes Successful Infection.
Cell Rep. 2020 May 12;31(6):107638. doi: 10.1016/j.celrep.2020.107638.
7
SNX3 drives maturation of phagosomes by forming a hub for PI(3)P, Rab5a, and galectin-9.
J Cell Biol. 2019 Sep 2;218(9):3039-3059. doi: 10.1083/jcb.201812106. Epub 2019 Jul 23.
8
Formate Promotes Intercellular Spread and Virulence Gene Expression.
mBio. 2018 Sep 25;9(5):e01777-18. doi: 10.1128/mBio.01777-18.
10
Manipulation of host membranes by the bacterial pathogens Listeria, Francisella, Shigella and Yersinia.
Semin Cell Dev Biol. 2016 Dec;60:155-167. doi: 10.1016/j.semcdb.2016.07.019. Epub 2016 Jul 19.

本文引用的文献

1
p62 and NDP52 proteins target intracytosolic Shigella and Listeria to different autophagy pathways.
J Biol Chem. 2011 Jul 29;286(30):26987-95. doi: 10.1074/jbc.M111.223610. Epub 2011 Jun 6.
2
Activation of a RhoA/myosin II-dependent but Arp2/3 complex-independent pathway facilitates Salmonella invasion.
Cell Host Microbe. 2011 Apr 21;9(4):273-85. doi: 10.1016/j.chom.2011.03.009.
5
Monitoring Shigella flexneri vacuolar escape by flow cytometry.
Virulence. 2011 Jan-Feb;2(1):54-7. doi: 10.4161/viru.2.1.14666.
6
Entrapment of intracytosolic bacteria by septin cage-like structures.
Cell Host Microbe. 2010 Nov 18;8(5):433-44. doi: 10.1016/j.chom.2010.10.009.
7
Spotting the right location- imaging approaches to resolve the intracellular localization of invasive pathogens.
Biochim Biophys Acta. 2011 Mar;1810(3):297-307. doi: 10.1016/j.bbagen.2010.10.008. Epub 2010 Oct 26.
9
QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ.
Nat Methods. 2010 May;7(5):339-40. doi: 10.1038/nmeth0510-339.
10
Tracking the dynamic interplay between bacterial and host factors during pathogen-induced vacuole rupture in real time.
Cell Microbiol. 2010 Apr 1;12(4):545-56. doi: 10.1111/j.1462-5822.2010.01428.x. Epub 2010 Jan 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验