Rollings Ryan C, McNabb David S, Li Jiali
Department of Physics, University of Arkansas, Fayetteville, AR, USA.
Methods Mol Biol. 2012;870:79-97. doi: 10.1007/978-1-61779-773-6_5.
Solid-state nanopores are emerging as robust single molecule electronic measurement devices and as platforms for confining biomolecules for further analysis. The first silicon nitride nanopore to detect individual DNA molecules was fabricated using ion beam sculpting (IBS), a method that uses broad, low-energy ion beams to create nanopores with dimensions ranging from 2 to 20 nm. In this chapter, we discuss the fabrication, characterization, and use of IBS-sculpted nanopores as well as efficient uses of pClamp and MATLAB software suites for data acquisition and analysis. The fabrication section covers the repeatability and the pore size limits. The characterization discussion focuses on the geometric properties as measured by low- and high-resolution transmission electron microscopy (TEM), electron energy loss spectroscopy, and energy-filtered TEM. The section on translocation experiments focuses on how to use tools commonly available to the nanopore experimenter to determine whether a pore will be useful for experimentation or if it should be abandoned. A memory-efficient method of taking data using Clampex's event-driven mode and dual-channel recording is presented, followed by an easy-to-implement multithreshold event detection and classification method using MATLAB software.
固态纳米孔正逐渐成为强大的单分子电子测量设备以及用于限制生物分子以进行进一步分析的平台。首个用于检测单个DNA分子的氮化硅纳米孔是使用离子束雕刻(IBS)制造的,该方法利用宽束、低能量离子束来创建尺寸范围为2至20纳米的纳米孔。在本章中,我们将讨论IBS雕刻纳米孔的制造、表征和应用,以及用于数据采集和分析的pClamp和MATLAB软件套件的有效使用方法。制造部分涵盖了可重复性和孔径限制。表征讨论聚焦于通过低分辨率和高分辨率透射电子显微镜(TEM)、电子能量损失谱和能量过滤TEM测量的几何特性。转运实验部分着重于如何使用纳米孔实验人员常用的工具来确定一个孔是否适用于实验,或者是否应将其舍弃。介绍了一种使用Clampex的事件驱动模式和双通道记录进行数据采集的内存高效方法,随后是一种使用MATLAB软件易于实现的多阈值事件检测和分类方法。