Suppr超能文献

使用计算机自适应测试对心力衰竭症状进行简短而精确的患者自我评估。

Short and precise patient self-assessment of heart failure symptoms using a computerized adaptive test.

机构信息

Department of Quantitative Health Sciences, University of Massachusetts, Worcester, MA, USA.

出版信息

Circ Heart Fail. 2012 May 1;5(3):331-9. doi: 10.1161/CIRCHEARTFAILURE.111.964916. Epub 2012 Apr 23.

Abstract

BACKGROUND

Assessment of dyspnea, fatigue, and physical disability is fundamental to the monitoring of patients with heart failure (HF). A plethora of patient-reported measures exist, but most are too burdensome or imprecise to be useful in clinical practice. New techniques used for computer adaptive tests (CATs) may be able to address these problems. The purpose of this study was to build a CAT for patients with HF.

METHODS AND RESULTS

Item banks of 74 queries ("items") were developed to assess self-reported physical disability, fatigue, and dyspnea. All queries were administered to 658 adults with HF to build 3 item banks. The resulting HF-CAT was administered to 100 patients with ancillary HF (New York Heart Association I, 11%; II, 53%; III and IV, 36%). In addition, the physical function and vitality domains of the SF-36 Health Survey questionnaire, an established shortness-of-breath scale, and the Minnesota Living with Heart Failure Questionnaire were applied. The HF-CAT assessment took 3:09±1:52 minutes to complete and score. All HF-CAT scales demonstrated good construct validity through high correlations with the corresponding SF-36 Health Survey physical function (r=-0.87), vitality (r=-0.85), and shortness-of-breath (r=0.84) scales. Simulation studies showed a more precise measurement of all HF-CAT scales over a larger range than comparable static tools. The HF-CAT scales identified significant differences between patients classified by the New York Heart Association symptom criteria, similar to the Minnesota Living with Heart Failure Questionnaire.

CONCLUSIONS

A new CAT for patients with HF was built using modern psychometric methods. Initial results demonstrate its potential to increase the feasibility and precision of patient self-assessments of symptoms of HF with minimized respondent burden.

CLINICAL TRIAL REGISTRATION- URL: http://www.projectreporter.nih.gov. Unique identifier: 1R43HL083622-01.

摘要

背景

评估呼吸困难、疲劳和身体残疾是监测心力衰竭(HF)患者的基础。存在大量的患者报告测量方法,但大多数方法过于繁琐或不精确,无法在临床实践中使用。用于计算机自适应测试(CAT)的新技术可能能够解决这些问题。本研究的目的是为 HF 患者构建 CAT。

方法和结果

开发了 74 个查询(“项目”)的项目库,用于评估自我报告的身体残疾、疲劳和呼吸困难。将所有查询都施测给 658 名 HF 成年人,以构建 3 个项目库。由此产生的 HF-CAT 施测给 100 名 HF 辅助患者(纽约心脏协会 I 级,11%;II 级,53%;III 级和 IV 级,36%)。此外,还应用了 SF-36 健康调查问卷的身体功能和活力领域、一种已确立的呼吸困难量表以及明尼苏达州心力衰竭生活质量问卷。HF-CAT 评估需要 3:09±1:52 分钟才能完成并评分。所有 HF-CAT 量表通过与相应的 SF-36 健康调查身体功能(r=-0.87)、活力(r=-0.85)和呼吸困难(r=0.84)量表的高相关性显示出良好的结构有效性。模拟研究表明,与可比的静态工具相比,HF-CAT 量表在更大的范围内对所有 HF-CAT 量表进行了更精确的测量。HF-CAT 量表在根据纽约心脏协会症状标准分类的患者之间识别出了显著差异,与明尼苏达州心力衰竭生活质量问卷相似。

结论

使用现代心理计量学方法为 HF 患者构建了一种新的 CAT。初步结果表明,它有可能在减轻应答者负担的情况下,提高 HF 患者对 HF 症状进行自我评估的可行性和精确性。

临床试验注册- URL:http://www.projectreporter.nih.gov。唯一标识符:1R43HL083622-01。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验