Suppr超能文献

使用心率变异性的功率谱指数进行睡眠阶段评估:初步研究澄清的局限性。

Sleep stage assessment using power spectral indices of heart rate variability with a simple algorithm: limitations clarified from preliminary study.

机构信息

College of Nursing Art and Science, University of Hyogo, Hyogo, Japan.

出版信息

Biol Res Nurs. 2013 Jul;15(3):264-72. doi: 10.1177/1099800412440498. Epub 2012 Apr 23.

Abstract

Clinical researchers do not typically assess sleep with polysomnography (PSG) but rather with observation. However, methods relying on observation have limited reliability and are not suitable for assessing sleep depth and cycles. The purpose of this methodological study was to compare a sleep analysis method based on power spectral indices of heart rate variability (HRV) data to PSG. PSG and electrocardiography data were collected synchronously from 10 healthy women (ages 20-61 years) over 23 nights in a laboratory setting. HRV was analyzed for each 60-s epoch and calculated at 3 frequency band powers (very low frequency [VLF]-hi: 0.016-0.04 Hz; low frequency [LF]: 0.04-0.15 Hz; and high frequency [HF]: 0.15-0.4 Hz). Using HF/(VLF-hi + LF + HF) value, VLF-hi, and heart rate (HR) as indices, an algorithm to categorize sleep into 3 states (shallow sleep corresponding to Stages 1 & 2, deep sleep corresponding to Stages 3 & 4, and rapid eye movement [REM] sleep) was created. Movement epochs and time of sleep onset and wake-up were determined using VLF-hi and HR. The minute-by-minute agreement rate with the sleep stages as identified by PSG and HRV data ranged from 32 to 72% with an average of 56%. Longer wake after sleep onset (WASO) resulted in lower agreement rates. The mean differences between the 2 methods were 2 min for the time of sleep onset and 6 min for the time of wake-up. These results indicate that distinguishing WASO from shallow sleep segments is difficult using this HRV method. The algorithm's usefulness is thus limited in its current form, and it requires additional modification.

摘要

临床研究人员通常不使用多导睡眠图 (PSG) 评估睡眠,而是进行观察。然而,依赖观察的方法可靠性有限,不适合评估睡眠深度和周期。本方法学研究的目的是比较基于心率变异性 (HRV) 数据的功率谱指数的睡眠分析方法与 PSG。在实验室环境中,对 10 名健康女性(年龄 20-61 岁)进行了 23 晚的同步 PSG 和心电图数据采集。对每 60 秒的时段进行 HRV 分析,并在 3 个频带功率(极低频 [VLF]-高:0.016-0.04 Hz;低频 [LF]:0.04-0.15 Hz;和高频 [HF]:0.15-0.4 Hz)下进行计算。使用 HF/(VLF-高+LF+HF)值、VLF-高和心率(HR)作为指标,创建了一种将睡眠分为 3 种状态的算法(浅睡眠对应于 1 期和 2 期,深睡眠对应于 3 期和 4 期,快速眼动 [REM] 睡眠)。使用 VLF-高和 HR 确定运动时段和睡眠开始和醒来时间。PSG 和 HRV 数据识别的睡眠阶段的每分钟一致性率为 32%至 72%,平均为 56%。睡眠后觉醒时间(WASO)较长导致一致性率较低。两种方法之间的平均差异为入睡时间相差 2 分钟,醒来时间相差 6 分钟。这些结果表明,使用这种 HRV 方法很难将 WASO 与浅睡眠区分开来。因此,该算法在其当前形式下的实用性有限,需要进一步修改。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验