Verdoni N, Aon M A, Lebeault J M, Thomas D
Division des Procedés Biotechnologiques, Université de Technologie de Compiègne.
J Bacteriol. 1990 Dec;172(12):6673-81. doi: 10.1128/jb.172.12.6673-6681.1990.
Batch cultures of Pseudomonas mendocina, grown in rich medium with glucose excess, showed metabolic differences dependent upon whether the growth conditions were aerobic or anaerobic, with or without added electron acceptor. Under anaerobic conditions in the absence of nitrate, P. mendocina reached the stationary phase of growth after 2 or 3 days, followed by a stationary phase of 4 to 5 days. Under these conditions, a mixed-type fermentative metabolism (formic, lactic, and acetic acids) appeared. A fivefold-higher specific rate of glucose consumption and eightfold-higher production of organic acids, compared with aerobic cultures, were shown by this microorganism growing anaerobically in the absence of exogenous electron acceptors. The gradients of organic acid produced by P. mendocina under these conditions reached a maximum (lactate, 180 mV; formate, 150 mV; acetate, 215 mV) between days 2 and 3 of culture. The proton motive force (delta p) decreased during growth from -254 to -71 mV. The intracellular pH remained alkaline during the culture, reaching a steady-state value of 7.9. The gradients of organic acids apparently contributed to the generation of a delta p, which, according to the Energy Recycling Model (P. A. M. Michels, J. P. J. Michels, J. Boonstra, and W. N. Konings, FEMS Microbiol. Lett. 5:357-364, 1979), would produce an average energy gain of 1 or 1.5 mol of ATP equivalents per mol of glucose consumed with H+/ATP stoichiometry of 3 or 2, respectively. Low YATP and Yglucose values were observed, suggesting that an uncoupled metabolism exists; i.e., ATP produced by catabolic processes is not directly used for biomass synthesis. This metabolic uncoupling could be induced at least in part by organic acids and the ATP wastage could be induced by a membrane-bound ATPase involved in intracellular pH regulation.
在富含葡萄糖且葡萄糖过量的培养基中进行的门多萨假单胞菌分批培养显示,代谢差异取决于生长条件是有氧还是无氧,以及是否添加电子受体。在无氧且无硝酸盐的条件下,门多萨假单胞菌在2或3天后进入生长稳定期,随后是4至5天的稳定期。在这些条件下,出现了混合型发酵代谢(甲酸、乳酸和乙酸)。与有氧培养相比,这种在没有外源电子受体的情况下厌氧生长的微生物显示出葡萄糖消耗比速率高五倍,有机酸产量高八倍。在这些条件下,门多萨假单胞菌产生的有机酸梯度在培养的第2天至第3天达到最大值(乳酸,180 mV;甲酸,150 mV;乙酸,215 mV)。质子动力势(Δp)在生长过程中从-254 mV降至-71 mV。在培养过程中细胞内pH保持碱性,达到7.9的稳态值。有机酸梯度显然有助于产生Δp,根据能量循环模型(P. A. M. Michels、J. P. J. Michels、J. Boonstra和W. N. Konings,FEMS Microbiol. Lett. 5:357 - 364,第1979页),每消耗1摩尔葡萄糖,分别以H⁺/ATP化学计量比为3或2时,将产生平均1或1.5摩尔ATP当量的能量增益。观察到较低的YATP和Y葡萄糖值,表明存在解偶联代谢;即分解代谢过程产生的ATP不直接用于生物量合成。这种代谢解偶联至少部分可由有机酸诱导,而ATP浪费可由参与细胞内pH调节的膜结合ATP酶诱导。