Center for Computational and Integrative Biology and Department of Computer Science, Rutgers University, Camden, NJ 08102, USA.
Bioinformatics. 2012 Jun 15;28(12):1619-23. doi: 10.1093/bioinformatics/bts255. Epub 2012 Apr 28.
Computer-aided genetic design is a promising approach to a core problem of metabolic engineering-that of identifying genetic manipulation strategies that result in engineered strains with favorable product accumulation. This approach has proved to be effective for organisms including Escherichia coli and Saccharomyces cerevisiae, allowing for rapid, rational design of engineered strains. Finding optimal genetic manipulation strategies, however, is a complex computational problem in which running time grows exponentially with the number of manipulations (i.e. knockouts, knock-ins or regulation changes) in the strategy. Thus, computer-aided gene identification has to date been limited in the complexity or optimality of the strategies it finds or in the size and level of detail of the metabolic networks under consideration.
Here, we present an efficient computational solution to the gene identification problem. Our approach significantly outperforms previous approaches--in seconds or minutes, we find strategies that previously required running times of days or more.
GDBB is implemented using MATLAB and is freely available for non-profit use at http://crab.rutgers.edu/~dslun/gdbb.
计算机辅助遗传设计是代谢工程核心问题的一种很有前途的方法,该问题是确定导致工程菌株具有有利产物积累的遗传操作策略。该方法已被证明对大肠杆菌和酿酒酵母等生物体有效,可快速、合理地设计工程菌株。然而,寻找最佳遗传操作策略是一个复杂的计算问题,策略中的操作数量(即敲除、敲入或调控变化)呈指数增长,运行时间也随之增长。因此,迄今为止,计算机辅助基因识别在其发现的策略的复杂性或最优性方面,或者在考虑的代谢网络的大小和详细程度方面都受到限制。
在这里,我们提出了一种有效的基因识别问题的计算解决方案。我们的方法明显优于以前的方法 - 在几秒钟或几分钟内,我们找到了以前需要几天或更长时间才能找到的策略。
GDBB 是使用 MATLAB 实现的,可在非营利性使用时免费获得,网址为 http://crab.rutgers.edu/~dslun/gdbb。