Suppr超能文献

使用迭代单层线性规划问题生产目标化学化合物的计算机设计策略。

In Silico Design Strategies for the Production of Target Chemical Compounds Using Iterative Single-Level Linear Programming Problems.

机构信息

Cell Factory Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.

Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.

出版信息

Biomolecules. 2022 Apr 21;12(5):620. doi: 10.3390/biom12050620.

Abstract

The optimization of metabolic reaction modifications for the production of target compounds is a complex computational problem whose execution time increases exponentially with the number of metabolic reactions. Therefore, practical technologies are needed to identify reaction deletion combinations to minimize computing times and promote the production of target compounds by modifying intracellular metabolism. In this paper, a practical metabolic design technology named AERITH is proposed for high-throughput target compound production. This method can optimize the production of compounds of interest while maximizing cell growth. With this approach, an appropriate combination of metabolic reaction deletions can be identified by solving a simple linear programming problem. Using a standard CPU, the computation time could be as low as 1 min per compound, and the system can even handle large metabolic models. AERITH was implemented in MATLAB and is freely available for non-profit use.

摘要

代谢反应修饰的优化对于目标化合物的生产是一个复杂的计算问题,其执行时间随着代谢反应数量的增加呈指数级增长。因此,需要实用的技术来确定反应删除组合,以最小化计算时间并通过修饰细胞内代谢来促进目标化合物的生产。在本文中,提出了一种名为 AERITH 的实用代谢设计技术,用于高通量目标化合物的生产。该方法可以在最大化细胞生长的同时优化感兴趣化合物的生产。通过这种方法,可以通过求解简单的线性规划问题来确定适当的代谢反应删除组合。使用标准 CPU,每个化合物的计算时间可以低至 1 分钟,并且该系统甚至可以处理大型代谢模型。AERITH 是在 MATLAB 中实现的,可以免费用于非营利目的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验