Suppr超能文献

用于跨姿态人脸识别的特定主体和姿态导向的面部特征。

Subject-specific and pose-oriented facial features for face recognition across poses.

作者信息

Lee Ping-Han, Hsu Gee-Sern, Wang Yun-Wen, Hung Yi-Ping

机构信息

MediaTek Inc., Hsinchu 300, Taiwan.

出版信息

IEEE Trans Syst Man Cybern B Cybern. 2012 Oct;42(5):1357-68. doi: 10.1109/TSMCB.2012.2191773. Epub 2012 Apr 25.

Abstract

Most face recognition scenarios assume that frontal faces or mug shots are available for enrollment to the database, faces of other poses are collected in the probe set. Given a face from the probe set, one needs to determine whether a match in the database exists. This is under the assumption that in forensic applications, most suspects have their mug shots available in the database, and face recognition aims at recognizing the suspects when their faces of various poses are captured by a surveillance camera. This paper considers a different scenario: given a face with multiple poses available, which may or may not include a mug shot, develop a method to recognize the face with poses different from those captured. That is, given two disjoint sets of poses of a face, one for enrollment and the other for recognition, this paper reports a method best for handling such cases. The proposed method includes feature extraction and classification. For feature extraction, we first cluster the poses of each subject's face in the enrollment set into a few pose classes and then decompose the appearance of the face in each pose class using Embedded Hidden Markov Model, which allows us to define a set of subject-specific and pose-priented (SSPO) facial components for each subject. For classification, an Adaboost weighting scheme is used to fuse the component classifiers with SSPO component features. The proposed method is proven to outperform other approaches, including a component-based classifier with local facial features cropped manually, in an extensive performance evaluation study.

摘要

大多数人脸识别场景都假定正面人脸或面部照片可用于录入数据库,而其他姿态的人脸则收集在探测集中。给定一张来自探测集的人脸,需要确定数据库中是否存在匹配项。这是基于在法医应用中的假设,即大多数嫌疑人的面部照片都可在数据库中获取,而人脸识别旨在当嫌疑人不同姿态的面部被监控摄像头捕捉到时识别出他们。本文考虑一种不同的场景:给定一张具有多种姿态的人脸,这些姿态可能包括也可能不包括面部照片,开发一种方法来识别与所捕捉姿态不同的人脸。也就是说,给定一张人脸的两个不相交的姿态集,一个用于录入,另一个用于识别,本文报告一种最适合处理此类情况的方法。所提出的方法包括特征提取和分类。对于特征提取,我们首先将录入集中每个主体人脸的姿态聚类为几个姿态类别,然后使用嵌入式隐马尔可夫模型分解每个姿态类别中人脸的外观,这使我们能够为每个主体定义一组特定于主体且面向姿态的(SSPO)面部组件。对于分类,使用Adaboost加权方案将组件分类器与SSPO组件特征进行融合。在一项广泛的性能评估研究中,所提出的方法被证明优于其他方法,包括一种手动裁剪局部面部特征的基于组件的分类器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验