Department of Pediatrics, Emory University, and Center for Developmental Lung Biology, Children's Healthcare of Atlanta, Georgia 30322, USA.
Alcohol Clin Exp Res. 2012 Nov;36(11):1952-62. doi: 10.1111/j.1530-0277.2012.01825.x. Epub 2012 May 2.
Previous studies have shown that chronic ethanol (EtOH) ingestion results in impaired alveolar macrophage function, increased TGF-β(1) production, and decreased antioxidant availability. Similarly, alternative activation (M2 activation) of alveolar macrophages also induces TGF-β(1) production and impairs macrophage function. However, the potential links between EtOH-induced alveolar macrophage derangements, M2 activation, TGF-β(1) production signaling, and oxidant stress have yet to be examined. We hypothesized that EtOH-induced oxidant stress and induction of TGF-β(1) signaling result in alternative activation which subsequently impairs the phagocytic capacity of alveolar macrophages.
Primary rat alveolar macrophages and the alveolar macrophages cell line NR8383 were treated with 0.08% EtOH ± the antioxidant glutathione (GSH) or a TGF-β(1) neutralizing antibody for 5 days. Outcome measures included TGF-β(1) production, reactive oxygen species (ROS) production, phagocytic capacity, and expression of markers of M2 activation.
Chronic EtOH treatment greatly decreased alveolar macrophage phagocytic function, increased ROS production, increased TGF-β(1) , and increased expression of markers of M2 activation. GSH supplementation and inhibition of TGF-β(1) signaling during EtOH treatment prevented these alterations.
EtOH treatment increased oxidant stress, TGF-β(1) production, and alternative activation in NR8383 cells. However, GSH supplementation and ablation of TGF-β(1) signaling prevented these effects. This suggested that the EtOH-induced switch to an M2 phenotype was a result of decreased antioxidant availability and increased TGF-β(1) signaling. Preventing EtOH-induced induction of alternative activation may improve alveolar macrophage function in alcoholic subjects and decrease the risk of respiratory infections.
先前的研究表明,慢性乙醇(EtOH)摄入会导致肺泡巨噬细胞功能受损、TGF-β(1)产生增加和抗氧化剂供应减少。同样,肺泡巨噬细胞的替代激活(M2 激活)也会诱导 TGF-β(1)产生并损害巨噬细胞功能。然而,乙醇引起的肺泡巨噬细胞紊乱、M2 激活、TGF-β(1)产生信号和氧化应激之间的潜在联系尚未得到研究。我们假设乙醇诱导的氧化应激和 TGF-β(1)信号的诱导导致替代激活,随后损害肺泡巨噬细胞的吞噬能力。
用 0.08%乙醇±抗氧化剂谷胱甘肽(GSH)或 TGF-β(1)中和抗体处理原代大鼠肺泡巨噬细胞和肺泡巨噬细胞系 NR8383 5 天。观察指标包括 TGF-β(1)产生、活性氧(ROS)产生、吞噬能力以及 M2 激活标志物的表达。
慢性 EtOH 处理大大降低了肺泡巨噬细胞的吞噬功能,增加了 ROS 的产生,增加了 TGF-β(1)的产生,并增加了 M2 激活标志物的表达。GSH 补充和在 EtOH 处理过程中抑制 TGF-β(1)信号可防止这些改变。
EtOH 处理增加了 NR8383 细胞中的氧化应激、TGF-β(1)产生和替代激活。然而,GSH 补充和 TGF-β(1)信号的缺失可防止这些作用。这表明,EtOH 诱导的向 M2 表型的转变是由于抗氧化剂供应减少和 TGF-β(1)信号增加所致。预防 EtOH 诱导的替代激活可能会改善酒精性个体的肺泡巨噬细胞功能并降低呼吸道感染的风险。