Suppr超能文献

在镧系共掺剂中集中和回收能量,以实现高效和光谱纯的发射:以 NaYF4:Er3+/Tm3+ 上转换纳米晶体为例。

Concentrating and recycling energy in lanthanide codopants for efficient and spectrally pure emission: the case of NaYF4:Er3+/Tm3+ upconverting nanocrystals.

机构信息

The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

出版信息

J Phys Chem B. 2012 Sep 6;116(35):10561-70. doi: 10.1021/jp302401j. Epub 2012 May 14.

Abstract

In lanthanide-doped materials, energy transfer (ET) between codopant ions can populate or depopulate excited states, giving rise to spectrally pure luminescence that is valuable for the multicolor imaging and simultaneous tracking of multiple biological species. Here, we use the case study of NaYF(4) nanocrystals codoped with Er(3+) and Tm(3+) to theoretically investigate the ET mechanisms that selectively enhance and suppress visible upconversion luminescence under near-infrared excitation. Using an experimentally validated population balance model and using a path-tracing algorithm to objectively identify transitions with the most significant contributions, we isolated a network of six pathways that combine to divert energy away from the green-emitting manifolds and concentrate it in the Tm(3+):(3)F(4) manifold, which then participates in energy transfer upconversion (ETU) to populate the red-emitting Er(3+):(4)F(9/2) manifold. We conclude that the strength of this ETU process is a function of the strong coupling of the Tm(3+):(3)F(4) manifold and its ground state, the near-optimum band alignment of Er(3+) and Tm(3+) manifolds, and the concentration of population in Tm(3+):(3)F(4). These factors, along with the ability to recycle energy not utilized for red emission, also contribute to the enhanced quantum yield of NaYF(4):Er(3+)/Tm(3+). We generalize a scheme for applying these energy concentration and recycling pathways to other combinations of lanthanide dopants. Ultimately, these ET pathways and others elucidated by our theoretical modeling will enable the programming of physical properties in lanthanide-doped materials for a variety of applications that demand strong and precisely defined optical transitions.

摘要

在镧系掺杂材料中,共掺离子之间的能量转移(ET)可以填充或排空激发态,产生光谱纯的发光,这对于多色成像和同时跟踪多种生物物种非常有价值。在这里,我们以共掺 Er(3+)和 Tm(3+)的 NaYF(4)纳米晶为例,从理论上研究了选择性增强和抑制近红外激发下可见上转换发光的 ET 机制。我们使用经过实验验证的群体平衡模型,并使用路径追踪算法客观地识别具有最显著贡献的跃迁,从而分离出一个网络,该网络由六个途径结合在一起,将能量从绿光发射支路上转移,并将其集中在 Tm(3+):(3)F(4)支路上,然后通过能量转移上转换(ETU)将其转移到发红光的 Er(3+):(4)F(9/2)支路上。我们得出结论,这个 ETU 过程的强度是 Tm(3+):(3)F(4)支及其基态、Er(3+)和 Tm(3+)支的近最佳能带排列以及 Tm(3+):(3)F(4)中布居的浓度的强耦合的函数。这些因素,以及回收未用于红光发射的能量的能力,也有助于提高 NaYF(4):Er(3+)/Tm(3+)的量子产率。我们推广了一种将这些能量集中和回收途径应用于其他镧系掺杂剂组合的方案。最终,这些 ET 途径和我们的理论建模所阐明的其他途径将使在镧系掺杂材料中编程物理性质成为可能,以满足对强且精确定义的光学跃迁有需求的各种应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验