Suppr超能文献

着丝粒核小体的非常规结构。

The unconventional structure of centromeric nucleosomes.

作者信息

Henikoff Steven, Furuyama Takehito

机构信息

Howard Hughes Medical Institute and Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109-1024, USA.

出版信息

Chromosoma. 2012 Aug;121(4):341-52. doi: 10.1007/s00412-012-0372-y. Epub 2012 May 3.

Abstract

The centromere is a defining feature of the eukaryotic chromosome, required for attachment to spindle microtubules and segregation to the poles at both mitosis and meiosis. The fundamental unit of centromere identity is the centromere-specific nucleosome, in which the centromeric histone 3 (cenH3) variant takes the place of H3. The structure of the cenH3 nucleosome has been the subject of controversy, as mutually exclusive models have been proposed, including conventional and unconventional left-handed octamers (octasomes), hexamers with non-histone protein constituents, and right-handed heterotypic tetramers (hemisomes). Hemisomes have been isolated from native centromeric chromatin, but traditional nucleosome assembly protocols have generally yielded partially unwrapped left-handed octameric nucleosomes. In budding yeast, topology analysis and high-resolution mapping has revealed that a single right-handed cenH3 hemisome occupies the ~80-bp Centromere DNA Element II (CDEII) of each chromosome. Overproduction of cenH3 leads to promiscuous low-level incorporation of octasome-sized particles throughout the yeast genome. We propose that the right-handed cenH3 hemisome is the universal unit of centromeric chromatin, and that the inherent instability of partially unwrapped left-handed cenH3 octamers is an adaptation to prevent formation of neocentromeres on chromosome arms.

摘要

着丝粒是真核生物染色体的一个决定性特征,在有丝分裂和减数分裂过程中,它对于附着纺锤体微管并向两极分离是必需的。着丝粒身份的基本单位是着丝粒特异性核小体,其中着丝粒组蛋白3(cenH3)变体取代了H3。cenH3核小体的结构一直存在争议,因为有人提出了相互排斥的模型,包括传统和非常规的左手八聚体(八聚体小体)、含有非组蛋白成分的六聚体以及右手异型四聚体(半体)。半体已从天然着丝粒染色质中分离出来,但传统的核小体组装方案通常会产生部分解旋的左手八聚体核小体。在芽殖酵母中,拓扑分析和高分辨率图谱显示,单个右手cenH3半体占据每条染色体约80bp的着丝粒DNA元件II(CDEII)。cenH3的过量表达导致八聚体大小的颗粒在整个酵母基因组中随机低水平掺入。我们提出,右手cenH3半体是着丝粒染色质的通用单位,部分解旋的左手cenH3八聚体的固有不稳定性是一种适应性变化,以防止在染色体臂上形成新着丝粒。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a24f/3401303/ab16aef2cf89/412_2012_372_Fig1_HTML.jpg

相似文献

1
The unconventional structure of centromeric nucleosomes.
Chromosoma. 2012 Aug;121(4):341-52. doi: 10.1007/s00412-012-0372-y. Epub 2012 May 3.
2
Reconstitution of hemisomes on budding yeast centromeric DNA.
Nucleic Acids Res. 2013 Jun;41(11):5769-83. doi: 10.1093/nar/gkt314. Epub 2013 Apr 24.
3
Structure, dynamics, and evolution of centromeric nucleosomes.
Proc Natl Acad Sci U S A. 2007 Oct 9;104(41):15974-81. doi: 10.1073/pnas.0707648104. Epub 2007 Sep 24.
4
Tripartite organization of centromeric chromatin in budding yeast.
Proc Natl Acad Sci U S A. 2012 Jan 3;109(1):243-8. doi: 10.1073/pnas.1118898109. Epub 2011 Dec 19.
6
Centromere identity is specified by a single centromeric nucleosome in budding yeast.
Proc Natl Acad Sci U S A. 2007 Sep 11;104(37):14706-11. doi: 10.1073/pnas.0706985104. Epub 2007 Sep 5.
8
Histone H3 localizes to the centromeric DNA in budding yeast.
PLoS Genet. 2012 May;8(5):e1002739. doi: 10.1371/journal.pgen.1002739. Epub 2012 May 31.
9
Cse4 is part of an octameric nucleosome in budding yeast.
Mol Cell. 2009 Sep 24;35(6):794-805. doi: 10.1016/j.molcel.2009.07.022.
10
The centromeric nucleosome of budding yeast is perfectly positioned and covers the entire centromere.
Proc Natl Acad Sci U S A. 2011 Aug 2;108(31):12687-92. doi: 10.1073/pnas.1104978108. Epub 2011 Jul 18.

引用本文的文献

2
Misregulation of cell cycle-dependent methylation of budding yeast CENP-A contributes to chromosomal instability.
Mol Biol Cell. 2023 Sep 1;34(10):ar99. doi: 10.1091/mbc.E23-03-0108. Epub 2023 Jul 12.
3
Assembly principles and stoichiometry of a complete human kinetochore module.
Sci Adv. 2021 Jun 30;7(27). doi: 10.1126/sciadv.abg1037. Print 2021 Jun.
4
Mechanical and structural properties of archaeal hypernucleosomes.
Nucleic Acids Res. 2021 May 7;49(8):4338-4349. doi: 10.1093/nar/gkaa1196.
5
Centromeres under Pressure: Evolutionary Innovation in Conflict with Conserved Function.
Genes (Basel). 2020 Aug 10;11(8):912. doi: 10.3390/genes11080912.
8
Dbf4-Dependent Kinase (DDK)-Mediated Proteolysis of CENP-A Prevents Mislocalization of CENP-A in .
G3 (Bethesda). 2020 Jun 1;10(6):2057-2068. doi: 10.1534/g3.120.401131.
10
Triple-Helical DNA in Heterochromatin.
Cells. 2018 Nov 23;7(12):227. doi: 10.3390/cells7120227.

本文引用的文献

1
CENP-T-W-S-X forms a unique centromeric chromatin structure with a histone-like fold.
Cell. 2012 Feb 3;148(3):487-501. doi: 10.1016/j.cell.2011.11.061.
2
"Point" centromeres of Saccharomyces harbor single centromere-specific nucleosomes.
Genetics. 2012 Apr;190(4):1575-7. doi: 10.1534/genetics.111.137711. Epub 2012 Jan 10.
3
Assembly of Drosophila centromeric nucleosomes requires CID dimerization.
Mol Cell. 2012 Jan 27;45(2):263-9. doi: 10.1016/j.molcel.2011.12.010. Epub 2011 Dec 29.
4
Tripartite organization of centromeric chromatin in budding yeast.
Proc Natl Acad Sci U S A. 2012 Jan 3;109(1):243-8. doi: 10.1073/pnas.1118898109. Epub 2011 Dec 19.
5
Point centromeres contain more than a single centromere-specific Cse4 (CENP-A) nucleosome.
J Cell Biol. 2011 Nov 14;195(4):573-82. doi: 10.1083/jcb.201106036.
6
7
Drosophila CENH3 is sufficient for centromere formation.
Science. 2011 Nov 4;334(6056):686-90. doi: 10.1126/science.1206880.
8
Rapid de novo centromere formation occurs independently of heterochromatin protein 1 in C. elegans embryos.
Curr Biol. 2011 Nov 8;21(21):1800-7. doi: 10.1016/j.cub.2011.09.016. Epub 2011 Oct 20.
10
Nonhistone Scm3 binds to AT-rich DNA to organize atypical centromeric nucleosome of budding yeast.
Mol Cell. 2011 Aug 5;43(3):369-80. doi: 10.1016/j.molcel.2011.07.009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验