Suppr超能文献

在秀丽隐杆线虫胚胎中,快速从头形成着丝粒独立于异染色质蛋白 1 发生。

Rapid de novo centromere formation occurs independently of heterochromatin protein 1 in C. elegans embryos.

机构信息

Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA.

出版信息

Curr Biol. 2011 Nov 8;21(21):1800-7. doi: 10.1016/j.cub.2011.09.016. Epub 2011 Oct 20.

Abstract

DNA injected into the Caenorhabditis elegans germline forms extrachromosomal arrays that segregate during cell division [1, 2]. The mechanisms underlying array formation and segregation are not known. Here, we show that extrachromosomal arrays form de novo centromeres at high frequency, providing unique access to a process that occurs with extremely low frequency in other systems [3-8]. De novo centromerized arrays recruit centromeric chromatin and kinetochore proteins and autonomously segregate on the spindle. Live imaging following DNA injection revealed that arrays form after oocyte fertilization via homologous recombination and nonhomologous end-joining. Individual arrays gradually transition from passive inheritance to active segregation during the early embryonic divisions. The heterochromatin protein 1 (HP1) family proteins HPL-1 and HPL-2 are dispensable for de novo centromerization even though arrays become strongly enriched for the heterochromatin-associated H3K9me3 modification over time. Partial inhibition of HP1 family proteins accelerates the acquisition of segregation competence. In addition to reporting the first direct visualization of new centromere formation in living cells, these findings reveal that naked DNA rapidly builds de novo centromeres in C. elegans embryos in an HP1-independent manner and suggest that, rather than being a prerequisite, HP1-dependent heterochromatin antagonizes de novo centromerization.

摘要

DNA 注入秀丽隐杆线虫生殖细胞系后会形成额外的染色体阵列,这些阵列在细胞分裂过程中会发生分离[1,2]。然而,目前尚不清楚形成和分离这些染色体阵列的机制。在这里,我们发现额外的染色体阵列以高频率形成新的着丝粒,为研究在其他系统中极少发生的过程提供了独特的机会[3-8]。新形成的着丝粒会募集着丝粒染色质和动粒蛋白,并在纺锤体上自主分离。通过 DNA 注射后的实时成像显示,这些染色体阵列是在卵母细胞受精后通过同源重组和非同源末端连接形成的。在早期胚胎分裂过程中,单个阵列逐渐从被动遗传转变为主动分离。尽管随着时间的推移,染色体阵列逐渐富集与异染色质相关的 H3K9me3 修饰,但异染色质蛋白 1 (HP1) 家族蛋白 HPL-1 和 HPL-2 对于新着丝粒的形成是可有可无的。HP1 家族蛋白的部分抑制会加速获得分离能力。除了首次直接观察到活细胞中新着丝粒的形成外,这些发现表明,裸 DNA 可以在秀丽隐杆线虫胚胎中以 HP1 非依赖的方式快速建立新的着丝粒,并且表明 HP1 依赖性异染色质不是新着丝粒形成的先决条件,而是拮抗新着丝粒形成。

相似文献

引用本文的文献

1
Increased maize chromosome number by engineered chromosome fission.通过工程化染色体裂变增加玉米染色体数目
Sci Adv. 2025 May 23;11(21):eadw3433. doi: 10.1126/sciadv.adw3433. Epub 2025 May 21.
4
Nematode chromosomes.线虫染色体。
Genetics. 2022 May 5;221(1). doi: 10.1093/genetics/iyac014.
8
Epigenetic regulation of centromere function.着丝粒功能的表观遗传调控。
Cell Mol Life Sci. 2020 Aug;77(15):2899-2917. doi: 10.1007/s00018-020-03460-8. Epub 2020 Feb 1.
9
Genetic and epigenetic effects on centromere establishment.遗传和表观遗传对着丝粒建立的影响。
Chromosoma. 2020 Mar;129(1):1-24. doi: 10.1007/s00412-019-00727-3. Epub 2019 Nov 28.
10
The Transgenic Toolbox.转基因工具包。
Genetics. 2019 Aug;212(4):959-990. doi: 10.1534/genetics.119.301506.

本文引用的文献

5
Progress and prospects: human artificial chromosomes.进展与展望:人类人工染色体。
Gene Ther. 2009 Oct;16(10):1180-8. doi: 10.1038/gt.2009.102. Epub 2009 Aug 27.
6
The life and miracles of kinetochores.动粒的生命与奇迹。
EMBO J. 2009 Sep 2;28(17):2511-31. doi: 10.1038/emboj.2009.173. Epub 2009 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验