Fambrini Marco, Salvini Mariangela, Pugliesi Claudio
Dipartimento di Biologia delle Piante Agrarie, Sezione di Genetica Agraria, Università di Pisa, Via Matteotti 1B, Pisa, Italy.
Genetica. 2011 Dec;139(11-12):1521-9. doi: 10.1007/s10709-012-9652-y. Epub 2012 May 3.
In several eudicots, including members of the Asteraceae family, the CYCLOIDEA (CYC) genes, which belong to the TCP class of transcription factors, are key players for floral symmetry. The sunflower inflorescence is heterogamous (radiate capitulum) with sterile monosymmetric ray flowers located in the outermost whorl of the inflorescence and hermaphrodite polysymmetric disk flowers. In inflorescence of Heliantheae tribe, flower primordia development initiates from the marginal ray flowers while disk flowers develop later in an acropetal fashion in organized parastichies along a number found to be one of Fibonacci patterns. Mutants for inflorescence morphology can provide information on the role of CYC-like genes in radiate capitulum evolution. The tubular ray flower (turf) mutant of sunflower shows hermaphrodite ray flowers with a nearly polysymmetric tubular-like corolla. Here, we demonstrate that this mutation is caused by the insertion in the TCP motif of a sunflower CYC-like gene (HaCYC2c) of non-autonomous transposable element (TE), belonging to the CACTA superfamily of transposons. We named this element Transposable element of turf1 (Tetu1). The Tetu1 insertion changes the reading frame of turf-HaCYC2c for the encoded protein and leads to a premature stop codon. Although in Tetu1 a transposase gene is lacking, our results clearly suggest that it is an active TE. The excision of Tetu1 restores the wild type phenotype or generates stable mutants. Co-segregation and sequence analysis in progenies of F(2) and self-fertilized plants derived from reversion of turf to wild type clearly identify HaCYC2c as a key regulator of ray flowers symmetry. Also, HaCYC2c loss-of-function promotes the developmental switch from sterile to hermaphrodite flowers, revealing a novel and unexpected role for a CYC-like gene in the repression of female organs.
在包括菊科成员在内的几种真双子叶植物中,属于TCP转录因子家族的CYCLOIDEA(CYC)基因是花对称性的关键调控因子。向日葵花序是异花授粉的(辐射状头状花序),不育的单对称舌状花位于花序的最外层轮,而两性的多对称盘状花位于内部。在向日葵族的花序中,花原基的发育从边缘舌状花开始,而盘状花则以向顶的方式在有组织的斜列线中较晚发育,这些斜列线的数量符合斐波那契数列模式。花序形态突变体可以为CYC类基因在辐射状头状花序进化中的作用提供信息。向日葵的管状舌状花(turf)突变体表现出具有近乎多对称管状花冠的两性舌状花。在这里,我们证明这种突变是由属于转座子CACTA超家族的非自主转座元件(TE)插入向日葵CYC类基因(HaCYC2c)的TCP基序中引起的。我们将这个元件命名为turf1转座元件(Tetu1)。Tetu1插入改变了turf-HaCYC2c编码蛋白的阅读框,并导致提前出现终止密码子。虽然Tetu1中缺乏转座酶基因,但我们的结果清楚地表明它是一个活跃的TE。Tetu1的切除恢复了野生型表型或产生稳定的突变体。从turf回复到野生型的F2代和自交植物后代中的共分离和序列分析清楚地确定HaCYC2c是舌状花对称性的关键调节因子。此外,HaCYC2c功能丧失促进了从不育花到两性花的发育转变,揭示了CYC类基因在抑制雌蕊器官方面的新的意外作用。