Suppr超能文献

大海捞针般迅速找到关键:一款用于临床前研究的新型自动化心律失常检测软件。

Quickly finding a needle in a haystack: a new automated cardiac arrhythmia detection software for preclinical studies.

作者信息

Koeppel Florence, Labarre David, Zitoun Philippe

机构信息

NOTOCORD Systems-113, chemin de Ronde, 78290 Croissy-sur-Seine, France.

出版信息

J Pharmacol Toxicol Methods. 2012 Sep;66(2):92-7. doi: 10.1016/j.vascn.2012.04.008. Epub 2012 Apr 23.

Abstract

INTRODUCTION

The occurrence of drug-induced arrhythmias in safety pharmacology or toxicology studies is a primary safety concern. The risk assessment requires an accurate knowledge of background arrhythmia incidence and frequency in the test system/species, as well as a rigorous evaluation of the effects of the potential new medical entities on the electrocardiogram (ECG). However, the direct assessment of arrhythmia in ECG recordings is a time-consuming effort and is rarely achieved due to lack of suitable automated tools. A new software application named ARR30a was developed for fast automated detection in preclinical studies, for the five major arrhythmia types, namely sinus pauses, atrial beats, junctional beats, ventricular beats and type 2 atrio-ventricular blocks (AV-blocks II). The purpose of this study was to characterize the performance of ARR30a in large and small animal species.

METHODS

Detection sensitivity and predictivity were evaluated on a database of 84 ECG recordings representative of each animal species and experimental protocols typically used in efficacy, safety pharmacology and toxicology studies. Automated arrhythmia detection was compared with manual analysis.

RESULTS

In large animals such as dogs, non-human primates and pigs, ARR30a sensitivity reached 90.6%, 82.2% and 78.0% for ventricular beats, AV-blocks II and junctional beats with predictivity of 83.4%, 94.4% and 93.5%, respectively. Significantly lower sensitivity was observed in rats for junctional beats due to challenging problems of detection for low amplitude P-waves. Robustness to noise was assessed by adding increasing noise levels to ECG signals and showed no significant impact on arrhythmia detection at moderate noise levels. Processing time for a 24 hour recording was approximately 4 min for dogs and 6 min for rats on a 3 GHz processor.

DISCUSSION

This newly validated ECG arrhythmia detector ARR30a allows evaluating all major ECG signal abnormalities and enhances the quantification of arrhythmia incidence in all major laboratory animal species. The mark editor RME10a enables manual validation of the automated analysis and refinement of the arrhythmia classification.

摘要

引言

在安全性药理学或毒理学研究中药物诱导的心律失常的发生是主要的安全关注点。风险评估需要准确了解测试系统/物种中背景心律失常的发生率和频率,以及对潜在新药物实体对心电图(ECG)影响的严格评估。然而,直接评估ECG记录中的心律失常是一项耗时的工作,并且由于缺乏合适的自动化工具而很少能够实现。开发了一种名为ARR30a的新软件应用程序,用于在临床前研究中对五种主要心律失常类型进行快速自动检测,这五种类型分别为窦性停搏、房性早搏、交界性早搏、室性早搏和二度房室传导阻滞(AV阻滞II型)。本研究的目的是表征ARR30a在大型和小型动物物种中的性能。

方法

在一个包含84份ECG记录的数据库上评估检测灵敏度和预测性,这些记录代表了每种动物物种以及在药效学、安全性药理学和毒理学研究中通常使用的实验方案。将自动心律失常检测与人工分析进行比较。

结果

在大型动物如犬、非人灵长类动物和猪中,ARR30a对室性早搏、AV阻滞II型和交界性早搏的检测灵敏度分别达到90.6%、82.2%和78.0%,预测性分别为83.4%、94.4%和93.5%。由于低振幅P波检测存在挑战性问题,在大鼠中观察到交界性早搏的灵敏度显著较低。通过向ECG信号添加逐渐增加的噪声水平来评估对噪声的稳健性,结果表明在中等噪声水平下对心律失常检测没有显著影响。在3 GHz处理器上,犬24小时记录的处理时间约为4分钟,大鼠为6分钟。

讨论

这种新验证的ECG心律失常检测器ARR30a能够评估所有主要的ECG信号异常,并提高所有主要实验动物物种中心律失常发生率的量化。标记编辑器RME10a能够对自动分析进行人工验证并完善心律失常分类。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验