Suppr超能文献

黑腹果蝇的免疫反应在特定年龄段的变化具有遗传基础。

Age-specific variation in immune response in Drosophila melanogaster has a genetic basis.

机构信息

Department of Biological Sciences, University of Maryland, Baltimore, MD 21250, USA.

出版信息

Genetics. 2012 Jul;191(3):989-1002. doi: 10.1534/genetics.112.140640. Epub 2012 May 2.

Abstract

Immunosenescence, the age-related decline in immune system function, is a general hallmark of aging. While much is known about the cellular and physiological changes that accompany immunosenescence, we know little about the genetic influences on this phenomenon. In this study we combined age-specific measurements of bacterial clearance ability following infection with whole-genome measurements of the transcriptional response to infection and wounding to identify genes that contribute to the natural variation in immunosenescence, using Drosophila melanogaster as a model system. Twenty inbred lines derived from nature were measured for their ability to clear an Escherichia coli infection at 1 and 4 weeks of age. We used microarrays to simultaneously determine genome-wide expression profiles in infected and wounded flies at each age for 12 of these lines. Lines exhibited significant genetically based variation in bacterial clearance at both ages; however, the genetic basis of this variation changed dramatically with age. Variation in gene expression was significantly correlated with bacterial clearance ability only in the older age group. At 4 weeks of age variation in the expression of 247 genes following infection was associated with genetic variation in bacterial clearance. Functional annotation analyses implicate genes involved in energy metabolism including those in the insulin signaling/TOR pathway as having significant associations with bacterial clearance in older individuals. Given the evolutionary conservation of the genes involved in energy metabolism, our results could have important implications for understanding immunosenescence in other organisms, including humans.

摘要

免疫衰老,即免疫系统功能随年龄增长而下降,是衰老的普遍特征。虽然我们已经了解了伴随免疫衰老的细胞和生理变化,但对于这一现象的遗传影响却知之甚少。在这项研究中,我们结合了感染后细菌清除能力的年龄特异性测量值,以及感染和创伤后转录反应的全基因组测量值,利用黑腹果蝇作为模型系统,鉴定了导致免疫衰老自然变异的基因。我们对 20 个源自自然的近交系进行了测量,以评估它们在 1 周龄和 4 周龄时清除大肠杆菌感染的能力。对于其中的 12 个品系,我们使用微阵列在每个年龄的感染和受伤的果蝇中同时确定了全基因组的表达谱。这些品系在两个年龄段的细菌清除能力上都表现出显著的遗传基础变异;然而,这种变异的遗传基础随年龄的变化而急剧变化。只有在年龄较大的组别中,基因表达的变异才与细菌清除能力显著相关。在 4 周龄时,感染后 247 个基因的表达变化与细菌清除能力的遗传变异有关。功能注释分析表明,参与能量代谢的基因,包括胰岛素信号/TOR 通路中的基因,与老年人的细菌清除能力有显著关联。考虑到参与能量代谢的基因在进化上的保守性,我们的研究结果可能对理解其他生物体(包括人类)的免疫衰老具有重要意义。

相似文献

1
Age-specific variation in immune response in Drosophila melanogaster has a genetic basis.
Genetics. 2012 Jul;191(3):989-1002. doi: 10.1534/genetics.112.140640. Epub 2012 May 2.
2
Naturally occurring genetic variation in the age-specific immune response of Drosophila melanogaster.
Aging Cell. 2006 Aug;5(4):293-5. doi: 10.1111/j.1474-9726.2006.00219.x. Epub 2006 Jun 27.
3
Phagocytic ability declines with age in adult Drosophila hemocytes.
Aging Cell. 2014 Aug;13(4):719-28. doi: 10.1111/acel.12227. Epub 2014 May 14.
4
Unraveling the Molecular Mechanism of Immunosenescence in .
Int J Mol Sci. 2018 Aug 21;19(9):2472. doi: 10.3390/ijms19092472.
5
Innate immune responses of Drosophila melanogaster are altered by spaceflight.
PLoS One. 2011 Jan 11;6(1):e15361. doi: 10.1371/journal.pone.0015361.
6
X-linked variation in immune response in Drosophila melanogaster.
Genetics. 2009 Dec;183(4):1477-91. doi: 10.1534/genetics.108.093971. Epub 2009 Oct 12.
7
The Genetic Basis of Natural Variation in Immune Defense against .
Genes (Basel). 2020 Feb 22;11(2):234. doi: 10.3390/genes11020234.
8
A transcriptional network associated with natural variation in Drosophila aggressive behavior.
Genome Biol. 2009;10(7):R76. doi: 10.1186/gb-2009-10-7-r76. Epub 2009 Jul 16.
9
Adaptive evolution of a novel Drosophila lectin induced by parasitic wasp attack.
Mol Biol Evol. 2012 Feb;29(2):565-77. doi: 10.1093/molbev/msr191. Epub 2011 Aug 26.
10
Genetic basis of natural variation in D. melanogaster antibacterial immunity.
Science. 2004 Mar 19;303(5665):1873-6. doi: 10.1126/science.1092447.

引用本文的文献

1
An updated proteomic analysis of haemolymph after bacterial infection.
Fly (Austin). 2025 Dec;19(1):2485685. doi: 10.1080/19336934.2025.2485685. Epub 2025 Apr 13.
2
Inhibition of S6K lowers age-related inflammation and increases lifespan through the endolysosomal system.
Nat Aging. 2024 Apr;4(4):491-509. doi: 10.1038/s43587-024-00578-3. Epub 2024 Feb 27.
4
Fly immunity comes of age: The utility of as a model for studying variation in immunosenescence.
Front Aging. 2022 Oct 4;3:1016962. doi: 10.3389/fragi.2022.1016962. eCollection 2022.
6
Meta-Analysis of Immune Induced Gene Expression Changes in Diverse Innate Immune Responses.
Insects. 2022 May 23;13(5):490. doi: 10.3390/insects13050490.
7
Insulin/IGF-1 signaling promotes immunosuppression via the STAT3 pathway: impact on the aging process and age-related diseases.
Inflamm Res. 2021 Dec;70(10-12):1043-1061. doi: 10.1007/s00011-021-01498-3. Epub 2021 Sep 2.
8
The Impact of Age on Response to Infection in .
Microorganisms. 2021 Apr 29;9(5):958. doi: 10.3390/microorganisms9050958.
9
The Genetic Basis of Natural Variation in Immune Defense against .
Genes (Basel). 2020 Feb 22;11(2):234. doi: 10.3390/genes11020234.
10
Genetic Basis of Increased Lifespan and Postponed Senescence in .
G3 (Bethesda). 2020 Mar 5;10(3):1087-1098. doi: 10.1534/g3.120.401041.

本文引用的文献

1
NATURAL GENETIC VARIATION OF LIFE SPAN, REPRODUCTION, AND JUVENILE GROWTH IN DAPHNIA.
Evolution. 1999 Dec;53(6):1744-1756. doi: 10.1111/j.1558-5646.1999.tb04559.x.
3
Senescence of the cellular immune response in Drosophila melanogaster.
Exp Gerontol. 2011 Nov;46(11):853-9. doi: 10.1016/j.exger.2011.07.004. Epub 2011 Jul 23.
4
Rapid evolution of coral proteins responsible for interaction with the environment.
PLoS One. 2011;6(5):e20392. doi: 10.1371/journal.pone.0020392. Epub 2011 May 25.
5
A decline in p38 MAPK signaling underlies immunosenescence in Caenorhabditis elegans.
PLoS Genet. 2011 May;7(5):e1002082. doi: 10.1371/journal.pgen.1002082. Epub 2011 May 19.
6
Senescence and sexual selection in a pelagic copepod.
PLoS One. 2011 Apr 14;6(4):e18870. doi: 10.1371/journal.pone.0018870.
7
Genetic analysis of environmental variation.
Genet Res (Camb). 2010 Dec;92(5-6):381-95. doi: 10.1017/S0016672310000546.
8
Signatures of selection acting on the innate immunity gene Toll-like receptor 2 (TLR2) during the evolutionary history of rodents.
J Evol Biol. 2011 Jun;24(6):1232-40. doi: 10.1111/j.1420-9101.2011.02254.x. Epub 2011 Mar 18.
9
Molecular evolution of the toll-like receptor multigene family in birds.
Mol Biol Evol. 2011 May;28(5):1703-15. doi: 10.1093/molbev/msq351. Epub 2011 Jan 14.
10
Role of TOR signaling in aging and related biological processes in Drosophila melanogaster.
Exp Gerontol. 2011 May;46(5):382-90. doi: 10.1016/j.exger.2010.11.036. Epub 2010 Dec 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验