Suppr超能文献

生物化学网络结构复杂度降低的有保证误差界。

Guaranteed error bounds for structured complexity reduction of biochemical networks.

机构信息

Life Sciences Interface Doctoral Training Centre, University of Oxford, Parks Road, Oxford OX1 3QU, UK.

出版信息

J Theor Biol. 2012 Jul 7;304:172-82. doi: 10.1016/j.jtbi.2012.04.002. Epub 2012 Apr 9.

Abstract

Biological systems are typically modelled by nonlinear differential equations. In an effort to produce high fidelity representations of the underlying phenomena, these models are usually of high dimension and involve multiple temporal and spatial scales. However, this complexity and associated stiffness makes numerical simulation difficult and mathematical analysis impossible. In order to understand the functionality of these systems, these models are usually approximated by lower dimensional descriptions. These can be analysed and simulated more easily, and the reduced description also simplifies the parameter space of the model. This model reduction inevitably introduces error: the accuracy of the conclusions one makes about the system, based on reduced models, depends heavily on the error introduced in the reduction process. In this paper we propose a method to calculate the error associated with a model reduction algorithm, using ideas from dynamical systems. We first define an error system, whose output is the error between observables of the original and reduced systems. We then use convex optimisation techniques in order to find approximations to the error as a function of the initial conditions. In particular, we use the Sum of Squares decomposition of polynomials in order to compute an upper bound on the worst-case error between the original and reduced systems. We give biological examples to illustrate the theory, which leads us to a discussion about how these techniques can be used to model-reduce large, structured models typical of systems biology.

摘要

生物系统通常通过非线性微分方程来建模。为了对潜在现象进行高精度的表示,这些模型通常具有较高的维度,并涉及多个时间和空间尺度。然而,这种复杂性和相关的刚性使得数值模拟变得困难,数学分析也变得不可能。为了理解这些系统的功能,这些模型通常通过低维描述来近似。这些描述可以更容易地进行分析和模拟,并且模型的简化描述也简化了模型的参数空间。这种模型降阶不可避免地会引入误差:基于降阶模型得出的关于系统的结论的准确性,在很大程度上取决于降阶过程中引入的误差。在本文中,我们提出了一种使用动力系统的思想来计算模型降阶算法相关误差的方法。我们首先定义一个误差系统,其输出是原始系统和降阶系统之间观测值的误差。然后,我们使用凸优化技术来寻找误差作为初始条件函数的近似值。具体来说,我们使用多项式的平方和分解来计算原始系统和降阶系统之间最坏情况下误差的上界。我们给出了生物学示例来说明理论,这导致我们讨论了如何使用这些技术来对系统生物学中典型的大型结构化模型进行模型简化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验