Suppr超能文献

非均匀退相掩模会缩短系综测量中的相干寿命。

Inhomogeneous dephasing masks coherence lifetimes in ensemble measurements.

机构信息

The James Franck Institute and Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA.

出版信息

J Chem Phys. 2012 Apr 28;136(16):164508. doi: 10.1063/1.4704591.

Abstract

An open question at the forefront of modern physical sciences is what role, if any, quantum effects may play in biological sensing and energy transport mechanisms. One area of such research concerns the possibility of coherent energy transport in photosynthetic systems. Spectroscopic evidence of long-lived quantum coherence in photosynthetic light-harvesting pigment protein complexes (PPCs), along with theoretical modeling of PPCs, has indicated that coherent energy transport might boost efficiency of energy transport in photosynthesis. Accurate assessment of coherence lifetimes is crucial for modeling the extent to which quantum effects participate in this energy transfer, because such quantum effects can only contribute to mechanisms proceeding on timescales over which the coherences persist. While spectroscopy is a useful way to measure coherence lifetimes, inhomogeneity in the transition energies across the measured ensemble may lead to underestimation of coherence lifetimes from spectroscopic experiments. Theoretical models of antenna complexes generally model a single system, and direct comparison of single system models to ensemble averaged experimental data may lead to systematic underestimation of coherence lifetimes, distorting much of the current discussion. In this study, we use simulations of the Fenna-Matthews-Olson complex to model single complexes as well as averaged ensembles to demonstrate and roughly quantify the effect of averaging over an inhomogeneous ensemble on measured coherence lifetimes. We choose to model the Fenna-Matthews-Olson complex because that system has been a focus for much of the recent discussion of quantum effects in biology, and use an early version of the well known environment-assisted quantum transport model to facilitate straightforward comparison between the current model and past work. Although ensemble inhomogeneity is known to lead to shorter lifetimes of observed oscillations (simply inhomogeneous spectral broadening in the time domain), this important fact has been left out of recent discussions of spectroscopic measurements of energy transport in photosynthesis. In general, these discussions have compared single-system theoretical models to whole-ensemble laboratory measurements without addressing the effect of inhomogeneous dephasing. Our work addresses this distinction between single system and ensemble averaged observations, and shows that the ensemble averaging inherent in many experiments leads to an underestimation of coherence lifetimes in individual systems.

摘要

现代物理科学前沿的一个开放性问题是,量子效应在生物传感和能量传输机制中可能起到何种作用(如果有的话)。此类研究的一个领域涉及光合作用系统中相干能量传输的可能性。在光合光捕获色素蛋白复合物(PPC)中,存在长寿命量子相干的光谱证据,以及对 PPC 的理论建模,都表明相干能量传输可能会提高光合作用中能量传输的效率。准确评估相干寿命对于对量子效应参与这种能量转移的程度进行建模至关重要,因为这种量子效应只能对相干持续时间超过的时间尺度上的机制做出贡献。尽管光谱学是测量相干寿命的一种有用方法,但在整个测量体系中,跃迁能量的不均匀性可能会导致从光谱实验中低估相干寿命。天线复合物的理论模型通常会对单个系统进行建模,而将单个系统模型与体系平均实验数据进行直接比较可能会导致对相干寿命的系统低估,从而扭曲了当前的大部分讨论。在这项研究中,我们使用 Fenna-Matthews-Olson 复合物的模拟来模拟单个复合物以及平均体系,以展示并大致量化在不均匀体系上进行平均对测量相干寿命的影响。我们选择 Fenna-Matthews-Olson 复合物进行建模,是因为该系统是近期生物学中量子效应讨论的焦点,并且使用早期版本的著名环境辅助量子传输模型来促进当前模型与过去工作之间的直接比较。尽管众所周知,体系不均匀性会导致观察到的振荡的寿命缩短(只是在时域中不均匀的光谱展宽),但这一重要事实已被排除在光合作用中能量传输的光谱测量的近期讨论之外。一般来说,这些讨论将单个系统的理论模型与整个体系的实验室测量进行了比较,而没有解决非均匀去相位的影响。我们的工作解决了单个系统和体系平均观测之间的这种区别,并表明许多实验中固有的体系平均会导致对单个系统中的相干寿命的低估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验