Suppr超能文献

早期球形红杆菌反应中心中细菌叶绿素 pheophytin 的还原对电荷分离的影响。

Early bacteriopheophytin reduction in charge separation in reaction centers of Rhodobacter sphaeroides.

机构信息

Department of Physics, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands.

出版信息

Biophys J. 2013 Jun 4;104(11):2493-502. doi: 10.1016/j.bpj.2013.04.026.

Abstract

A question at the forefront of biophysical sciences is, to what extent do quantum effects and protein conformational changes play a role in processes such as biological sensing and energy conversion? At the heart of photosynthetic energy transduction lie processes involving ultrafast energy and electron transfers among a small number of tetrapyrrole pigments embedded in the interior of a protein. In the purple bacterial reaction center (RC), a highly efficient ultrafast charge separation takes place between a pair of bacteriochlorophylls: an accessory bacteriochlorophyll (B) and bacteriopheophytin (H). In this work, we applied ultrafast spectroscopy in the visible and near-infrared spectral region to Rhodobacter sphaeroides RCs to accurately track the timing of the electron on BA and HA via the appearance of the BA and HA anion bands. We observed an unexpectedly early rise of the HA⁻ band that challenges the accepted simple picture of stepwise electron transfer with 3 ps and 1 ps time constants. The implications for the mechanism of initial charge separation in bacterial RCs are discussed in terms of a possible adiabatic electron transfer step between BA and HA, and the effect of protein conformation on the electron transfer rate.

摘要

生物物理科学的前沿问题之一是,量子效应和蛋白质构象变化在生物传感和能量转换等过程中起到了何种程度的作用?光合作用能量转换的核心是涉及少数几个嵌入蛋白质内部的四吡咯色素之间超快能量和电子转移的过程。在紫色细菌反应中心(RC)中,一对细菌叶绿素:辅助细菌叶绿素(B)和细菌叶绿素(H)之间发生高效的超快电荷分离。在这项工作中,我们通过 BA 和 HA 阴离子带的出现,应用可见和近红外光谱区的超快光谱学,准确地跟踪电子在 BA 和 HA 上的时间。我们观察到 HA⁻带的出乎意料的早期上升,这对具有 3 ps 和 1 ps 时间常数的逐步电子转移的公认简单图像提出了挑战。根据 BA 和 HA 之间可能的绝热电子转移步骤以及蛋白质构象对电子转移速率的影响,讨论了细菌 RC 中初始电荷分离机制的意义。

相似文献

1
Early bacteriopheophytin reduction in charge separation in reaction centers of Rhodobacter sphaeroides.
Biophys J. 2013 Jun 4;104(11):2493-502. doi: 10.1016/j.bpj.2013.04.026.
2
Switching sides-Reengineered primary charge separation in the bacterial photosynthetic reaction center.
Proc Natl Acad Sci U S A. 2020 Jan 14;117(2):865-871. doi: 10.1073/pnas.1916119117. Epub 2019 Dec 31.
5
An assessment of the mechanism of initial electron transfer in bacterial reaction centers.
Biochemistry. 1991 Jan 22;30(3):609-13. doi: 10.1021/bi00217a003.
7
Electron transfer in pheophytin a-modified reaction centers from Rhodobacter sphaeroides (R-26).
FEBS Lett. 1993 May 10;322(2):168-72. doi: 10.1016/0014-5793(93)81561-d.

引用本文的文献

5
Antagonistic Effects of Point Mutations on Charge Recombination and a New View of Primary Charge Separation in Photosynthetic Proteins.
J Phys Chem B. 2021 Aug 12;125(31):8742-8756. doi: 10.1021/acs.jpcb.1c03978. Epub 2021 Jul 30.
6
Switching sides-Reengineered primary charge separation in the bacterial photosynthetic reaction center.
Proc Natl Acad Sci U S A. 2020 Jan 14;117(2):865-871. doi: 10.1073/pnas.1916119117. Epub 2019 Dec 31.
8
Vibronic Coherence in the Charge Separation Process of the Rhodobacter sphaeroides Reaction Center.
J Phys Chem Lett. 2018 Apr 19;9(8):1827-1832. doi: 10.1021/acs.jpclett.8b00108. Epub 2018 Mar 29.
9
Recent advances in multidimensional ultrafast spectroscopy.
R Soc Open Sci. 2018 Jan 31;5(1):171425. doi: 10.1098/rsos.171425. eCollection 2018 Jan.
10
Weak temperature dependence of P (+) H A (-) recombination in mutant Rhodobacter sphaeroides reaction centers.
Photosynth Res. 2016 Jun;128(3):243-58. doi: 10.1007/s11120-016-0239-9. Epub 2016 Mar 4.

本文引用的文献

1
Inhomogeneous dephasing masks coherence lifetimes in ensemble measurements.
J Chem Phys. 2012 Apr 28;136(16):164508. doi: 10.1063/1.4704591.
2
Primary electron donor(s) in isolated reaction center of photosystem II from Chlamydomonas reinhardtii.
J Phys Chem B. 2012 Apr 26;116(16):4860-70. doi: 10.1021/jp302849d. Epub 2012 Apr 11.
3
Cofactor-specific photochemical function resolved by ultrafast spectroscopy in photosynthetic reaction center crystals.
Proc Natl Acad Sci U S A. 2012 Mar 27;109(13):4851-6. doi: 10.1073/pnas.1116862109. Epub 2012 Mar 12.
5
P680 (P(D1)P(D2)) and Chl(D1) as alternative electron donors in photosystem II core complexes and isolated reaction centers.
J Photochem Photobiol B. 2011 Jul-Aug;104(1-2):44-50. doi: 10.1016/j.jphotobiol.2011.02.003. Epub 2011 Mar 5.
6
Transmission coefficients for chemical reactions with multiple states: role of quantum decoherence.
J Am Chem Soc. 2011 Mar 23;133(11):3883-94. doi: 10.1021/ja107950m. Epub 2011 Feb 23.
7
Light-induced structural changes in a photosynthetic reaction center caught by Laue diffraction.
Science. 2010 Apr 30;328(5978):630-3. doi: 10.1126/science.1186159.
8
Two different charge separation pathways in photosystem II.
Biochemistry. 2010 May 25;49(20):4300-7. doi: 10.1021/bi1003926.
9
Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature.
Nature. 2010 Feb 4;463(7281):644-7. doi: 10.1038/nature08811.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验