Suppr超能文献

用于波长相关测量的可调谐光镊

Tunable optical tweezers for wavelength-dependent measurements.

作者信息

Hester Brooke, Campbell Gretchen K, López-Mariscal Carlos, Filgueira Carly Levin, Huschka Ryan, Halas Naomi J, Helmerson Kristian

机构信息

Physics and Astronomy Department, Appalachian State University, 525 Rivers Street, Boone, North Carolina 28608, USA.

出版信息

Rev Sci Instrum. 2012 Apr;83(4):043114. doi: 10.1063/1.4704373.

Abstract

Optical trapping forces depend on the difference between the trap wavelength and the extinction resonances of trapped particles. This leads to a wavelength-dependent trapping force, which should allow for the optimization of optical tweezers systems, simply by choosing the best trapping wavelength for a given application. Here we present an optical tweezer system with wavelength tunability, for the study of resonance effects. With this system, the optical trap stiffness is measured for single trapped particles that exhibit either single or multiple extinction resonances. We include discussions of wavelength-dependent effects, such as changes in temperature, and how to measure them.

摘要

光阱力取决于阱波长与被捕获粒子的消光共振之间的差异。这导致了一种与波长相关的捕获力,通过为给定应用选择最佳捕获波长,应可实现光镊系统的优化。在此,我们展示了一种具有波长可调性的光镊系统,用于研究共振效应。利用该系统,对表现出单重或多重消光共振的单个被捕获粒子测量了光阱刚度。我们还讨论了与波长相关的效应,如温度变化以及如何测量这些效应。

相似文献

1
Tunable optical tweezers for wavelength-dependent measurements.
Rev Sci Instrum. 2012 Apr;83(4):043114. doi: 10.1063/1.4704373.
3
Introduction to Optical Tweezers: Background, System Designs, and Commercial Solutions.
Methods Mol Biol. 2018;1665:3-23. doi: 10.1007/978-1-4939-7271-5_1.
4
Characterization of the Stiffness of Multiple Particles Trapped by Dielectrophoretic Tweezers in a Microfluidic Device.
Langmuir. 2016 Jan 26;32(3):922-7. doi: 10.1021/acs.langmuir.5b03677. Epub 2016 Jan 6.
5
Polarization-Dependent Plasmonic Nano-Tweezer as a Platform for On-Chip Trapping and Manipulation of Virus-Like Particles.
IEEE Trans Nanobioscience. 2022 Apr;21(2):226-231. doi: 10.1109/TNB.2021.3120747. Epub 2022 Mar 31.
6
Axial optical trapping forces on two particles trapped simultaneously by optical tweezers.
Appl Opt. 2005 May 1;44(13):2667-72. doi: 10.1364/ao.44.002667.
7
Exact Theory of Optical Tweezers and Its Application to Absolute Calibration.
Methods Mol Biol. 2017;1486:25-39. doi: 10.1007/978-1-4939-6421-5_2.
8
Introduction to Optical Tweezers: Background, System Designs, and Applications.
Methods Mol Biol. 2024;2694:3-28. doi: 10.1007/978-1-0716-3377-9_1.
9
Temperature Quantification and Temperature Control in Optical Tweezers.
Methods Mol Biol. 2022;2478:123-140. doi: 10.1007/978-1-0716-2229-2_7.
10
Quantifying Force and Viscoelasticity Inside Living Cells Using an Active-Passive Calibrated Optical Trap.
Methods Mol Biol. 2017;1486:513-536. doi: 10.1007/978-1-4939-6421-5_20.

引用本文的文献

1
Optical Fiber Tweezers: A Versatile Tool for Optical Trapping and Manipulation.
Micromachines (Basel). 2020 Jan 21;11(2):114. doi: 10.3390/mi11020114.

本文引用的文献

1
LSPR Imaging: Simultaneous Single Nanoparticle Spectroscopy and Diffusional Dynamics.
J Phys Chem C Nanomater Interfaces. 2009 Jan 1;113(39):16839-16842. doi: 10.1021/jp907377h.
3
Observation of optical resonances of dielectric spheres by light scattering.
Appl Opt. 1981 May 15;20(10):1803-14. doi: 10.1364/AO.20.001803.
4
Optimized optical trapping of gold nanoparticles.
Opt Express. 2010 Jan 18;18(2):551-9. doi: 10.1364/OE.18.000551.
5
Realistic modeling of the illumination point spread function in confocal scanning optical microscopy.
J Opt Soc Am A Opt Image Sci Vis. 2010 Feb 1;27(2):295-302. doi: 10.1364/JOSAA.27.000295.
6
Optical trapping of metallic Rayleigh particles.
Opt Lett. 1994 Jul 1;19(13):930-2. doi: 10.1364/ol.19.000930.
8
Efficient optical trapping and visualization of silver nanoparticles.
Nano Lett. 2008 May;8(5):1486-91. doi: 10.1021/nl080490+. Epub 2008 Apr 3.
9
Measurement of localized heating in the focus of an optical trap.
Appl Opt. 2000 Jul 1;39(19):3396-407. doi: 10.1364/ao.39.003396.
10
Recent advances in optical tweezers.
Annu Rev Biochem. 2008;77:205-28. doi: 10.1146/annurev.biochem.77.043007.090225.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验