Suppr超能文献

从动态 PET 数据计算隔室模型参数估计的方差。

Computation of variance in compartment model parameter estimates from dynamic PET data.

机构信息

Faculty of Computer and Informatics, Istanbul Technical University, Maslak, Istanbul, Turkey.

出版信息

Med Phys. 2012 May;39(5):2638-48. doi: 10.1118/1.3702456.

Abstract

PURPOSE

This paper investigates the validity of the analytical framework for variance ("analytical variance") in kinetic parameter and macroparameter estimations. Analytical variance is compared against the variance obtained from Monte Carlo simulations ("MC variance") for two different compartment models at different noise levels.

METHODS

Kinetic parameters for one-tissue (1T) and two-tissue (2T) compartment models are used to generate time-activity curves (TAC). Gaussian noise is added to the noiseless TAC to generate noise realizations for each noise level. The kinetic parameters are then estimated by minimizing the weighted squared error between the noisy TAC and the model output. Standard deviation is computed statistically from the estimated parameters and computed analytically using the framework at each noise level. The ratio of standard deviation to true parameter value obtained from Monte Carlo simulations and analytical computations is compared.

RESULTS

Difference between the analytical and MC variance increases with the level of noise and complexity of the compartment model. The standard deviation of the analytical variance also increases with the noise-level and model complexity. The difference between the analytical and MC variance is less than 3% for 1T compartment model and less than 10% for 2T compartment model at all noise levels. In addition, the standard deviation in the analytical variance is less than 15% for 1T and 2T compartment models at all noise levels.

CONCLUSIONS

These results indicate that the proposed framework for the variance in the kinetic parameter estimations can be used for 1T and 2T compartment models even in the existence of high noise.

摘要

目的

本文研究了用于动力学参数和宏观参数估计的方差分析框架(“分析方差”)的有效性。在不同噪声水平下,将分析方差与来自蒙特卡罗模拟的方差(“MC 方差”)进行比较,针对两种不同的房室模型。

方法

使用单室(1T)和双室(2T)房室模型的动力学参数生成时间-活性曲线(TAC)。向无噪声 TAC 添加高斯噪声,以生成每个噪声水平的噪声实现。然后通过最小化噪声 TAC 和模型输出之间的加权平方误差来估计动力学参数。在每个噪声水平下,从估计的参数中统计计算标准偏差,并使用框架进行分析计算。比较从 MC 模拟和分析计算获得的标准偏差与真实参数值的比值。

结果

分析方差和 MC 方差之间的差异随着噪声水平和房室模型的复杂性而增加。分析方差的标准偏差也随着噪声水平和模型复杂性的增加而增加。在所有噪声水平下,1T 房室模型的分析方差和 MC 方差之间的差异小于 3%,2T 房室模型的差异小于 10%。此外,在所有噪声水平下,1T 和 2T 房室模型的分析方差中的标准偏差均小于 15%。

结论

这些结果表明,即使在存在高噪声的情况下,也可以将用于动力学参数估计的方差分析框架用于 1T 和 2T 房室模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验