Centre for Sports Engineering Research, Sheffield Hallam University, Sheffield, UK.
Med Eng Phys. 2013 Jan;35(1):74-81. doi: 10.1016/j.medengphy.2012.03.012. Epub 2012 May 4.
Functional electrical stimulation is commonly used to correct drop foot following stroke or multiple sclerosis. This technique is successful for many patients, but previous studies have shown that a significant minority have difficulty identifying correct sites to place the electrodes in order to produce acceptable foot movement. Recently there has been some interest in the use of 'virtual electrodes', the process of stimulating a subset of electrodes chosen from an array, thus allowing the site of stimulation to be moved electronically rather than physically. We have developed an algorithm for automatically determining the best site of stimulation and tested it on a computer linked to a small, battery-powered prototype stimulator with 64 individual output channels. Stimulation was delivered via an 8×8 array adhered to the leg by high-resistivity self-adhesive hydrogel. Ten participants with stroke (ages 53-71 years) and 11 with MS (ages 40-80 years) were recruited onto the study and performed two walks of 10 m for each of the following conditions: own setup (PS), clinician setup (CS), automated setup (AS) and no stimulation (NS). The PS and CS conditions used the participant's own stimulator with two conventional electrodes; the AS condition used the new stimulator and algorithm. Outcome measures were walking speed, foot angle at initial contact and the Borg Rating of Perceived Exertion. Mean walking speed with no stimulation was 0.61 m/s; all FES setups significantly increased speed relative to this (AS p<0.05, PS p<0.01, CS p<0.01). Speed for PS (0.72 m/s) was faster than both AS (0.65 m/s, p<0.01) and CS (0.68 m/s, p<0.05). Frontal plane foot orientation at heel-strike was more neutral for AS (0.3° everted) than in the NS (11.2° inverted, p<0.01), PS (4.5° inverted, p<0.05) and CS (3.1° inverted, p<0.05) conditions. Dorsiflexion angles for AS (4.2°) were larger than NS (-3.0°, p<0.01), not different to PS (4.3°, p>0.05) and less dorsiflexed than CS (6.0°, p<0.05). This proof of principle study has demonstrated that automated setup of an array stimulator produces results broadly comparable to clinician setup. Slower walking speed for automated and clinician setups compared to the participants' own setup may be due to the participants' lack of familiarity with responses different to their usual setups. Automated setup using the method described here seems sufficiently reliable for future longer-term investigation outside the laboratory and may lead to FES becoming more viable for patients who, at present, have difficulty setting up conventional stimulators.
功能性电刺激常用于矫正中风或多发性硬化症后的足下垂。这种技术对许多患者是成功的,但以前的研究表明,少数患者难以确定正确的电极放置位置,以产生可接受的足部运动。最近,人们对“虚拟电极”的使用产生了一些兴趣,即刺激从数组中选择的一组电极子集的过程,从而可以电子方式而不是物理方式移动刺激部位。我们开发了一种自动确定最佳刺激部位的算法,并在与小型、电池供电的原型刺激器相连的计算机上进行了测试,该刺激器有 64 个单独的输出通道。刺激通过贴在腿上的 8x8 阵列进行,该阵列由高电阻自粘水凝胶制成。10 名中风参与者(年龄 53-71 岁)和 11 名多发性硬化症参与者(年龄 40-80 岁)参与了这项研究,他们在以下每种情况下进行了两次 10 米的行走:自己的设置(PS)、临床医生的设置(CS)、自动设置(AS)和无刺激(NS)。PS 和 CS 条件使用参与者自己的带有两个常规电极的刺激器;AS 条件使用新的刺激器和算法。测量指标包括行走速度、初始接触时的足部角度和 Borg 感知用力评分。无刺激时的平均行走速度为 0.61m/s;所有 FES 设置都显著提高了速度(AS p<0.05,PS p<0.01,CS p<0.01)。PS 的速度(0.72m/s)快于 AS(0.65m/s,p<0.01)和 CS(0.68m/s,p<0.05)。AS 状态在足跟接触时的前平面足部方向比 NS(11.2°倒置,p<0.01)、PS(4.5°倒置,p<0.05)和 CS(3.1°倒置,p<0.05)状态更中立。AS 的背屈角度(4.2°)大于 NS(-3.0°,p<0.01),与 PS(4.3°,p>0.05)没有差异,小于 CS(6.0°,p<0.05)。这项原理验证研究表明,使用这种方法自动设置数组刺激器的结果与临床医生设置的结果大致相当。与参与者自己的设置相比,自动设置和临床医生设置的步行速度较慢,可能是由于参与者对与他们通常设置不同的反应缺乏熟悉度。这里描述的自动设置方法似乎足够可靠,可以在实验室外进行未来的长期研究,并且可能使 FES 对目前难以设置传统刺激器的患者更具可行性。